
Hochschule Wismar
University of Applied Sciences
Technology, Business and Design
Fakultät für Ingenieurwissenschaften

Master’s Thesis

Privacy-Preserving Machine Learning in the Cloud: An Evaluation
of Garbled Circuits for Secure Multi-Party Computation

Submitted on: September 23, 2024

by: Kristin Dahnken

First Supervisor: Prof. Dr.-Ing. habil. Andreas Ahrens
Second Supervisor: Prof. Dr. Matthias Kreuseler

Kurzfassung

Kurzfassung

Machine Learning hat sich zu einem wichtigen Werkzeug verschiedenster Forschungs-
bereiche entwickelt, wie etwa der Medizin oder der Informationssicherheit. Dennoch
bringt die Verwendung von Cloud-Diensten zum Machine Learning noch einige Prob-
leme mit sich, beispielsweise bei der Verwendung von sensiblen Trainingsdaten, da
die Kontrolle über den Schutz dieser oft in den Händen des Cloud-Anbieters liegt.
Auch sollen nicht alle Parteien die an einem kollaborativen Training eines Modells
beteiligt sind, die Daten der jeweils anderen Parteien einsehen können.

Um diesem Problem zu begegnen und sensible Daten während des Trainingsprozesses
zu schützen, stellt diese Masterarbeit einen Proof of Concept vor, der Garbled Cir-
cuits in diesen Prozess integriert. Ziel ist es, sowohl die Machbarkeit als auch die
Sicherheit dieser Integration anhand einer beispielhaften Implementierung eines ein-
fachen linearen Regressionsmodells zu zeigen. Darüber hinaus werden auch Limi-
tierungen, Vorteile und mögliche zukünftige Anwendungen dieser Implementierung
diskutiert.

Abstract

Machine learning has become an important tool in research across various domains,
from medicine to cybersecurity. However, the use of cloud services for machine
learning poses challenges when dealing with sensitive data, as control over data
privacy is in the hands of the cloud provider. Additionally, not all parties involved
in developing or training a model should have access to the full training data.

To address this problem and protect sensitive data during the training process of a
machine learning model, this master’s thesis presents a proof of concept that incor-
porates garbled circuits into the aforementioned process. The aim is to demonstrate
that the usage of garbled circuits is both feasible and secure by detailing an ex-
emplary implementation of a simple linear regression model. This work will also
discuss limitations, advantages and possible future applications.

2

Table of Contents

Table of Contents

1 Motivation 5

2 Cryptography 7
2.1 The Historical Evolution of Cryptography 7
2.2 Quantum & Post-Quantum Cryptography 10
2.3 Symmetric Cryptography . 11
2.4 Asymmetric Cryptography . 13
2.5 Hash Functions & Digital Signatures 14
2.6 Cryptographic Protocols . 15
2.7 Cryptographic Attacks . 16

3 Secure Multi-Party Computation 18
3.1 Foundations & Applications . 18
3.2 Fundamental Protocols . 19
3.3 Security & Trust . 20
3.4 Limitations . 21

4 Garbled Circuits 22
4.1 Yao’s Garbled Circuits . 22

4.1.1 The Answer to the Millionaires’ Problem 22
4.1.2 Oblivious Transfer . 23
4.1.3 Boolean Circuits . 24
4.1.4 Garbling and Evaluation . 25

4.2 Garbling Scheme . 26
4.3 Security Properties . 27
4.4 Optimizations . 28
4.5 Summary . 29

5 Machine Learning 31
5.1 Introduction . 31
5.2 Paradigms . 31
5.3 Suitable Algorithms . 32

6 Cloud Computing 34
6.1 What is Cloud Computing? . 34
6.2 Architecture and Deployment Models 35
6.3 Service Models . 35
6.4 Trust and Confidentiality . 36

3

Table of Contents

7 Privacy-Preserving Machine Learning with Garbled Circuits 38
7.1 The Linear Regression Model . 38
7.2 Linear Regression in Machine Learning 39
7.3 Breaking down the model . 39
7.4 Constructing the Binary Circuits . 42

7.4.1 Addition . 42
7.4.2 Subtraction . 45
7.4.3 Multiplication . 45
7.4.4 Division . 46

7.5 Research & Development Design . 47
7.5.1 Implementation Plan . 47
7.5.2 Proposed Workflow . 48
7.5.3 Scope & Limitations . 48

8 Proof of Concept 50
8.1 Implementation . 50

8.1.1 Data Preparation Layer . 50
8.1.2 Binary Arithmetic Operations 51
8.1.3 Garbled Circuits . 55
8.1.4 Templates for Secure Linear Regression 57
8.1.5 Training and Prediction . 63

8.2 Evaluation . 68
8.2.1 Performance, Complexity and Implementation Effort 69
8.2.2 Security . 69
8.2.3 Advantages and Drawbacks 70
8.2.4 Future Work . 71

9 Outlook on Garbled Circuits in Machine Learning 74

References 75

List of Figures 78

List of Tables 79

List of Listings 80

Selbstständigkeitserklärung 82

4

Chapter 1. Motivation

1 Motivation

Over the last few years, machine learning has become an important tool in research,
e.g. for medicine, the environment (in terms of sustainability) or cybersecurity
(defence against attacks on IoT systems). As growing volumes of data and sometimes
highly complex problems can no longer be handled by humans, machine learning is
often used in such cases.

Both of these factors are also making the use of cloud services increasingly attractive,
as this primarily results in cost savings because there no longer is any need to operate
a dedicated data centre. In addition, cloud services enable location-independent,
collaborative work and can be scaled depending on the intended use. [8]

The use of cloud services for machine learning tends to be less suitable for sensitive
data (e.g. KRITIS, healthcare), as control over the data’s privacy is in the hands of
the cloud provider, with potentially unrestricted access.

Additionally, in some instances not all parties involved in the development or train-
ing of a model should have insight into the training data.

If one wants to utilise the advantages of cloud services (for example, to be able to use
all available data for the most precise training possible without disclosing sensitive
parts), there has to be a way to work with encrypted data without distorting the
results. It is not enough to simply store the training data in encrypted form; any
calculations performed must also be secure, as said data may be read by unauthorised
parties during this process.

To counter this problem and protect sensitive data from prying eyes even during
individual computing operations - i.e. the training of a machine learning model -
and thus also avoid potential GDPR breaches, the use of garbled circuits is a good
solution. [29]

Briefly explained, garbled circuits are a form of secure multi-party computation that
allows two (or more) mistrusting parties to compute a function on given data without
having to reveal their individual inputs to each other. Within the garbled circuit
the function is represented as a boolean circuit consisting of a number of boolean

5

Chapter 1. Motivation

gates. This circuit is “garbled” (a special encryption procedure) and afterwards it
is run on the encrypted input data, yielding the result of the function’s evaluation
without ever disclosing the individual input data to the parties involved. [3, 9]

One possible scenario in which the use of garbled circuits could be beneficial, would
be the creation of a dementia screening model based on real patient data from
various hospitals and care facilities.

6

Chapter 2. Cryptography

2 Cryptography

This chapter is intended to give a short historical overview of cryptography, as well
as some of its basic concepts, algorithms and protocols. It will also touch briefly on
the topic of cryptographic attacks.

2.1 The Historical Evolution of Cryptography

Cryptography - derived from the Greek words kryptos, meaning ‘hidden’ and graphein,
meaning ‘to write’ - is the discipline of hiding the meaning of a message. In order to
achieve this, protocols to both securely encode and decode the information need to
be used, which have to be agreed beforehand between the sender and the recipient
of said message.

Variations of these agreements have been practised throughout centuries and can be
traced back as far as to the use of hieroglyphics in ancient Egypt. The Greeks also
employed different forms of secret communication, from wax tablets that appeared
to be blank until the wax was scraped off, to the usage of scytale, cylinders with
strips of parchment wrapped around them. The messages written on these strips
could then only be deciphered by someone in the possession of a rod of the same
diameter as the one used by the sender.

Figure 1: The scytale as a transposition cipher [27]

The aforementioned scytale is a form of transposition, one of the two branches of
cryptography. In transposition, the individual letters of a message are rearranged
to hide its meaning. This is only effective when the transposition follows a specific
rule both sender and recipient have previously agreed upon and also kept secret.

7

Chapter 2. Cryptography

The second branch of cryptography is known as substitution. One of the most
prominent examples of substitution is the Caesar Cipher, which is based on a ci-
pher alphabet that is shifted by a given number of places relative to the plain text
alphabet and credited to have been developed by Julius Caesar.

Figure 2: The ROT-13 cipher, a prominent example of the Caesar cipher [5]

While cryptography in the Western World almost vanished during the Middle Ages
(largely due to the fall of the Roman Empire), some significant advancements have
been made by Arab scholars who were not just employing ciphers but also capable
of breaking them and thus inventing the field of cryptanalysis.

It was not until the Renaissance in fifteenth-century-Europe that the interest in - and
also the need for - cryptography resurfaced. It saw the development of polyalpha-
betic ciphers because by this time it was already widely known that monoalphabetic
ciphers (like the Caesar cipher) were vulnerable to frequency analysis, meaning that
only shifting the alphabet could not hide the frequency in which certain letters ap-
peared in a given language. Developed in the 1850s, the Vigenère Cipher is one
of the earliest known polyalphabetic ciphers but also one of the most complex. It
uses a series of Caesar ciphers with different shifts for each letter, determined by
the letter in the same position of a given keyword.

8

Chapter 2. Cryptography

Figure 3: A Vigenère Cipher Table and how to use it [24]

The 20th century marked a crucial turning point in the history of cryptography
due to the development of cipher machines like the Enigma, an electromechanical
device that uses rotors (or scramblers) and plugboard connections to create a set
of polyalphabets to do both encryption and decryption. Messages encrypted with
the Enigma machine were nearly impossible to crack without the corresponding de-
cryption key, which was determined by the machine’s initial setting (the scramblers’
starting positions, which were changed daily).

Figure 4: A Military Model Enigma I, in use from 1930 [17]

9

Chapter 2. Cryptography

The era of modern cryptography began in the second half of the 20th century. Pro-
grammable computers were now available and were soon employed to not only break
all sorts of ciphers but also to develop increasingly complex ones. New algorithms
such as the Data Encryption Standard (DES) and its successor, the Advanced En-
cryption Standard (AES) were created in the 1970’s and 1990’s, respectively.

In the 1970s, cryptographers Whitfield Diffie and Martin Hellman came up with
the first asymmetric-key cipher that defined what is known today as Public Key
Cryptography. This concept eliminates the problem of key distribution that all
symmetric-key ciphers suffer from. Like the name suggests, symmetric-key ciphers
- where the decryption process is simply the opposite of the encryption process -
use the same key for both actions. In asymmetric-key ciphers on the other hand
the encryption and decryption keys are not identical and only the latter needs to be
kept secret.

Based on the findings of Diffie and Hellman, Ron Rivest, Adi Shamir and Leonard
Adleman developed the RSA Algorithm (ca. 1977), the first implementation of an
asymmetric-key cipher, which is based on the difficulty of factoring the product of
two large prime numbers. Another prominent example of an asymmetric-key cipher
is Elliptic Curve Cryptography (ECC).

Building on these principles, the concept of digital signatures - which uses a combina-
tion of encryption and public-key cryptography to provide authentication, integrity,
and non-repudiation for digital documents and communications - was developed.

During the following years, various cryptographic protocols and standards, such
as Transport Layer Security (TLS) and the Public Key Cryptography Standards
(PKCS), have been developed to enable secure communication between systems
and networks. All of these developments mark crucial milestones of contemporary
cryptography, without which secure digital communication would not be possible.

2.2 Quantum & Post-Quantum Cryptography

While everything mentioned so far is practical technology, there are also concepts
which to date are mostly of theoretical nature - quantum and post-quantum cryp-
tography.

The emergence of quantum computing can be seen as both a blessing and a curse
to the field of cryptography. On one hand it poses a significant threat to classical
cryptographic systems, due to the fact that it would be able to solve the problems

10

Chapter 2. Cryptography

that make these systems secure, mainly the difficulty of factoring large numbers and
solving the discrete logarithm problem. On the other hand, quantum cryptogra-
phy would offer cryptographic systems that are virtually unbreakable by classical
computing methods.

To take it even further, post-quantum cryptography - or quantum-resistant cryptog-
raphy - aims to develop cryptographic algorithms that remain secure even against
the sheer power of quantum computers. Examples of such algorithms are lattice-
based cryptography, code-based cryptography and multivariate-quadratic-equations
cryptography.

2.3 Symmetric Cryptography

Classical cryptographic methodologies predominantly centred around the utilisation
of a sole confidential element to facilitate secure correspondence between two entities.
This confidential element necessitated prior sharing among the concerned parties to
prevent interception or inadvertent disclosure. Referred to as symmetric cryptog-
raphy, both encoding and decoding processes relied on this singular confidential
element, commonly known as a key. The primary virtues of such methodologies lie
in their rapidity and effectiveness, rendering them the favoured option for securing
extensive data volumes.

Figure 5: Symmetric Encryption Scheme [4]

One of the earliest, most influential symmetric algorithms is the Data Encryption
Standard (DES). It encrypts data in individual 64-bit blocks using a 56-bit key
through a series of 16 rounds of transformation, with each round being functionally
equivalent. The encryption process uses fixed tables known as S-boxes (substitu-

11

Chapter 2. Cryptography

tion boxes) in each of its rounds to make the encryption more resistant to attacks.
Which of these S-boxes are selected depends on the encryption key, or rather the in-
dividual subkeys used in each round. Despite still being in use today, e.g. in ATMs
or telecommunication protocols, DES has been deemed vulnerable to brute-force
attacks due to its relatively small key size. To maintain compatibility but increase
security, a more secure variant of DES has been adopted - Triple DES. This variant
simply applies the DES algorithm three times with different keys.

The aforementioned vulnerabilities led to the development of the Advanced Encryp-
tion Standard (AES), which is commonly used today since its support of key sizes
of 128, 192 and 256 bits provides a much higher level of security. It also operates
on 128-bit blocks of data, compared to the 64-bit blocks used in DES. The length of
the key affects both the number of rounds and the way its subkeys are constructed.
Each round but the last one consists of four operations: AddRoundKey, SubBytes,
ShiftRows and MixColumns. In the last round MixColumns is replaced with Ad-
dRoundKey to increase robustness. To date no practical attacks have been found
to break the AES cipher, making it the preferred choice for various applications.

Figure 6: Simplified overview including all steps of the AES algorithm [10]

Another symmetric algorithm worth mentioning is the Blowfish algorithm, which is
still used today in applications where speed and flexibility are crucial, like password
hashing or network protocols. It essentially works like DES, with a fixed block
length of 64-bit but a variable key length ranging from 32 to 448 bits, depending
on the desired level of security. While the usage of 64-bit blocks is a disadvantage
compared to other algorithms, it is considered secure with a sufficiently long key.

12

Chapter 2. Cryptography

2.4 Asymmetric Cryptography

Asymmetric cryptography, also known as public-key cryptography, is a type of en-
cryption that uses a pair of mathematically related keys: a public and a private
key.

This approach eliminates the need of secret key exchanges completely since the
involved parties can now simply generate a shared secret key. Like the names suggest,
the public key can be openly disseminated and used for encryption, while the private
key, known solely to the recipient of the encrypted message, is used for decryption.
While it would technically be possible to calculate the private key using the public
key, the length of both keys is typically chosen to be at least 1024 bits, rendering
this plan practically impossible.

Figure 7: A simple illustration of Public Key Cryptography [23]

In addition to encryption and subsequent decryption, asymmetric algorithms are also
used to generate digital signatures, which will be covered in the following section.

The RSA algorithm, named after its creators Rivest, Shamir and Adelman, is prob-
ably the most well known and adopted mechanism to date. It relies on the practical
difficulty of factoring large prime numbers to ensure its security.

In cases where more efficiency is needed without negatively affecting security levels,
Elliptic Curve Cryptography is a popular choice over the RSA algorithm, due to its
shorter key lengths and consequently lesser need for computational power. ECC is
based on the algebraic structure of elliptic curves and is used in many applications
and protocols, such as SSL/TLS or in mobile devices.

Laying the foundation for these algorithms, the Diffie-Hellman key exchange protocol
enables secure secret sharing between two parties over insecure channels. Both

13

Chapter 2. Cryptography

parties agree on a large prime number and base and each of them generates a private
key and a public value. The latter is then exchanged and enables both to calculate
the shared secret key together with their individual private keys.

2.5 Hash Functions & Digital Signatures

In addition to secure communication, there may also be the need to verify that some
data has not been tampered with, which can be ensured through hash functions.

Hash functions typically return a hexadecimal number that is unique to each unique
input, hence making it virtually impossible to generate the same value from two
different inputs. They are deterministic, meaning the same input will always produce
the same hash value. If the recipient now calculates the data’s hash value and it
differs from the original one, they know for a fact that the data they have received
has been modified.

Hashes are fast to compute, collision-resistant and very sensitive to small changes
in the input data but practically impossible to reverse-engineer, making them an
excellent choice for data integrity verification and other use cases, such as storing
passwords. Common hash functions include MD5, SHA-1, SHA-256 and SHA-3,
which are widely used in modern applications.

14

Chapter 2. Cryptography

Figure 8: The process of Digital Signing and Verification [25]

Digital signatures integrate both hash functions and asymmetric algorithms for an-
other crucial use case: ensuring authenticity and integrity of messages and their
respective senders. First, a unique hash value is generated from the original mes-
sage. This hash is then encrypted using the sender’s private key, resulting in the
digital signature. To later verify this signature, the message’s recipient simply de-
crypts it using the sender’s public key and then uses the same hash function as the
sender on the received message. If both the decrypted hash and the message’s hash
are the same, the recipient can be sure that the data has not been altered and it
also ensures the sender’s authenticity.

2.6 Cryptographic Protocols

The previous chapters dealt with so-called ‘cryptographic primitives’, while well-
established, these primitives are low-level algorithms or functions, designed to do a
single specific task and thus do not provide enough security in more complex use
cases. Cryptographic protocols are either abstract or concrete protocols that use the
aforementioned primitives as building blocks for their respective applications. They
are essential to communicate securely across a variety of platforms and devices.
Two of the most crucial protocols are SSL/TLS and IPsec, without which secure
communication on the internet would not be possible and all of the data that travels
through it would be exposed to everyone else beyond the sender and the intended
recipient.

SSL/TLS stands for Secure Sockets Layer/Transport Layer Security and secures

15

Chapter 2. Cryptography

web connections through HTTPS (alongside other lesser known applications). To
achieve this, both client and server use a handshake with an asymmetric algorithm
to agree on a session-specific key with which any further communication is encrypted
using a symmetric algorithm. The successful conclusion of the handshake starts the
secured connection and all messages sent are now encrypted and decrypted using
the shared session key.

IPsec - or Internet Protocol Security - is used to authenticate and encrypt data
packets sent via IP networks, such as VPNs, for example. IPsec offers two modes
of operation, depending on the intended use: transport mode and tunnel mode. In
transport mode, only the IP packet’s payload is encrypted while the header remains
intact, meaning it is primarily used for direct communication between two hosts,
e.g. a client and a server. In tunnel mode, the entire packet, including its header, is
encrypted and afterwards a new IP header is added to the packet to be able to route
it to its destined target. This mode ensures that the original packets are hidden
and protected from intermediary devices such as proxy servers. It is primarily used
to create VPNs and enables secure network-to-network, host-to-network and also
host-to-host communication.

There are also advanced cryptographic protocols that serve purposes beyond en-
suring the traditional security goals (confidentiality, integrity and availability), like
zero-knowledge proofs or secure multi-party computation. Zero-knowledge proofs
allow someone to prove that they are in possession of certain information without re-
vealing the information itself. They play a crucial role in secure voting systems and
anonymous transactions. SMPC protocols are considered advanced because they
leverage the ideas of traditional protocols to allow two or more parties to jointly
compute a function without revealing their individual inputs. Further details on
SMPC will be discussed in chapter 3.

2.7 Cryptographic Attacks

Cryptographic systems have always been the target of attacks and there actually are
a number of methods that proved to be successful. While symmetric systems can
be compromised by sheer brute-force or measures like frequency analysis, breaking
certain asymmetric cyphers is a much more complex process.

Symmetric ciphers are not only susceptible to brute-force attacks or frequency analy-
sis, but also to known- and chosen-plaintext attacks. To perform a KPA, an attacker
has to be in possession of a plaintext and its ciphertext from which they are then

16

Chapter 2. Cryptography

able to derive the key. For a CPA, an attacker simply chooses a number of plaintexts
and sends them to the targeted system. In doing so they are able to amass various
corresponding ciphertexts and possibly the encryption key [26].

It is important to realize that brute-force attacks on public-key encryption schemes
can be successful because they target the same component as in symmetric systems:
the key. The shorter the key, the easier it is to guess correctly and vice versa. [7]

The RSA algorithm, for example, relies on the practical difficulty of factoring large
prime numbers. If an adversary comes into possession of these numbers they’d be
able to calculate the private key. When these prime factors are not large enough to
begin with, they can easily be derived from the public key through means of prime
factorization, like Fermat’s factorization method or Pollard’s rho algorithm.

Taking a look at hash functions, one of their crucial properties is collision resistance,
which describes the difficulty to find two different messages that yield an equal hash.
Ideally, hash functions produce vastly different outputs for slight changes made to
an input message. Hash functions that only provide a weak collision resistance are
vulnerable to brute-force attacks like a birthday attack, during which random mes-
sages are encrypted and stored alongside their hash values in order to find possible
collisions. Other attacks on hash functions include dictionary attacks and lookup or
rainbow tables [22].

In addition to attacks on the protocol level, the physical environment in which the
cryptosystem is implemented can be targeted as well. These attacks are known as
side-channel attacks that exploit features such as power consumption, encryption
time and/or electromagnetic leaks. Attacks drawing information from power con-
sumption, for example, assume that different encryption keys have different resource
demands.
The existence of such side-channel attacks implies that any implementation of a
cryptographic protocol may still be vulnerable, even when proven to be secure on
protocol level [14].

17

Chapter 3. Secure Multi-Party Computation

3 Secure Multi-Party Computation

This chapter is intended to establish a basic understanding of the principles of secure
multi-party computation.

3.1 Foundations & Applications

Secure multi-party computation is a tool that enables multiple parties to jointly
compute a function without the need to disclose their individual input data. The
only value that is shared among them is the eventual output of the given function.
Typically, the involved parties do not trust each other and operate independently.

This idea was first introduced by Andrew Yao in 1982 in his paper Protocols for
Secure Computations, who later also proposed the garbled circuits protocol. To this
date, said protocol is still the basis for many SMPC implementations. It was not un-
til the 2000s that practical approaches to multi-party computation have been made,
though, due to technical and algorithmic limitations. The first notable implementa-
tion, Fairplay, was developed in 2004 and showed that a privacy-preserving program
could be compiled into executables using a high-level language. Unfortunately, it
was neither scalable nor particularly performant but since then the speed of MPC
protocols has improved vastly [30].

Some of the most important applications of MPC protocols include, but are not
limited to [6]:

Secure auctions. While in some auctions bidders may openly place their bids, other
auctions rely on privacy for bidders and sellers alike. In these auctions none of
the bidders should learn any other participant’s bid because they would then gain
an unfair advantage compared to the previous bidder. An example for such an
advantage would be enabling the current bidder to adjust their bid to be just slightly
higher than the latest bit and possibly win the auction at a fraction of the intended
price.

Secure voting. Privacy is crucial in the context of electronic voting, not only be-
cause it is a fundamental civil process closely tied to a country’s legislation but also

18

Chapter 3. Secure Multi-Party Computation

because knowing the tally allows for manipulation, which in turn could have severe
consequences.

Secure machine learning. MPC protocols are a valuable tool for enabling privacy
within machine learning systems, for both training and inference. In training, they
allow for multiple parties to jointly train a model without exposing their individual
data. Oblivious model inference, on the other hand, allows a client to retrieve a
prediction from an already trained model on a server - with the model being kept
private from the client and the inputs being kept private from the server.

A proof of concept for an exemplary training phase of a machine learning will be
detailed in chapter 8.

3.2 Fundamental Protocols

Listed below are a few of the fundamental protocols used in SMPC [6]:

Yao’s Garbled Circuits. Yao’s GC protocol is arguably the best known MPC tech-
nique and a fundamental one at that. Without it many of today’s MPC protocols
would not exist. For an in-depth explanation of Yao’s Garbled Circuit protocol, see
chapter 4.

BGW Protocol. Ben-Or, Goldwasser and Wigderson developed one of the first
multi-party protocols for secure computation, the BGW protocol, which can be used
to evaluate an arithmetic circuit with addition, multiplication and multiplication-
by-constant gates.

Information-Theoretic Garbled Circuits. In addition to being shared among parties,
secrets can also be shared among a circuit’s wires. This form of circuit construc-
tion is often preferred in environments that demand unconditional security despite
increased costs compared to traditional garbled circuits. In IT GC, less data per
communication round is sent but consequently, additional rounds are needed.
Some types of IT GC perform a lot better, though, because they allow the encryption
of a bit to again be a single bit rather than a ciphertext.

Oblivious Transfer. OT is a crucial building block for secure computation protocols
because it helps prevent involved parties from learning the input data of the other
parties during joint computations. An example will be discussed in chapter 4

19

Chapter 3. Secure Multi-Party Computation

3.3 Security & Trust

In general, there are three key categories of protocols - honest, semi-honest and
malicious [6].

Honest protocols are often also referred to as ideal world protocols because it assumes
a completely trusted party that privately computes a function on the inputs provided
by the other parties. An adversary in this scenario would not be able to gain any
information other than the intended one - which is the output of the computed
function - because they cannot take control over the trusted party. While these
protocols are theoretical in nature because fully trusted third parties do not exist
in the real world.

A semi-honest protocol assumes that all parties follow the rules but that an adversary
may try to gain additional information besides the output of the computed function.
Adversaries in this model are considered passive because they can only observe the
protocol’s execution but not intervene or anything because they are obliged to follow
the rules. In order for these protocols to be secure, participants are not allowed to
deviate from the rules and any information leakage has to be prevented.

In malicious security, adversaries are considered to be active since they themselves
can deviate from the protocol as they please and may also corrupt any of the other
involved parties to break protocol themselves. These actions could involve control-
ling, manipulating or injecting inputs into the function. These protocols typically
best reflect real-world scenarios where appropriate measures need to be taken against
untrusted parties and are considered to guarantee privacy and correctness.

Apart from malicious adversaries, SMPC protocols are also vulnerable to collusion
attacks and side-channel attacks. Collusion attacks are a serious problem in real-
world scenarios, especially when multiple malicious parties combine their respective
knowledge in order to gain information from other involved parties. Side-channel
attacks pose a threat whenever an adversary is able to access additional information
about the environment in which the SMPC protocol is executed, such as timing,
power consumption or memory access patterns. All of these examples could poten-
tially enable the adversary to gain knowledge about the computed function or its
input or intermediately calculated values.

20

Chapter 3. Secure Multi-Party Computation

3.4 Limitations

Despite being both adaptable and guaranteeing a high level of security, SMPC pro-
tocols still have their limitations. Overhead in terms of computation as well as
communication being one of the most prominent ones. Additionally, scalability may
cause problems when the computational demands or the complexity of the protocol
increase. Many protocols also simply assume a certain degree of trust which might
be broken due to insufficient measures or they are tailored for specific use cases and
thus limited in terms of generalization [20].

21

Chapter 4. Garbled Circuits

4 Garbled Circuits

4.1 Yao’s Garbled Circuits

4.1.1 The Answer to the Millionaires’ Problem

In 1982, computer scientist Andrew Yao introduced the Millionaires’ Problem and
alongside it, he proposed a simple solution which is widely thought to have led to the
creation of the garbled circuit protocol. Said problem described the interest of two
millionaires - Alice and Bob - to find out which of them is richer without disclosing
their individual wealth.

Yao’s solution to the aforementioned problem is effectively showing that it is possible
to solve this problem, all without the need to rely on third parties (trusted or not).
In his paper Protocols for secure computations, Yao describes his solution as follows
[30]:

For definiteness, suppose Alice has i millions and Bob has j millions, where 1 <

i, j < 10. We need a protocol for them to decide whether i < j, such that this is
also the only thing they know in the end (aside from their own values). Let M be
the set of all N -bit nonnegative integers, and QN be the set of all 1-1 onto functions
from M to M . Let Ea be the public key of Alice, generated by choosing a random
element from QN .

The protocol proceeds as follows:

1. Bob picks a random n-bit integer, and computes privately the value of Ea(x);
call the result k.

2. Bob sends Alice the number k − j + 1;

3. Alice computes privately the values of yu = Da(k− j + u) for u = 1, 2, . . . , 10.

4. Alice generates a random prime p of N/2 bits, and computes the values zu = yu

(mod p) for all u; if all zu differ by at least 2 in the mod p sense, stop; otherwise
generates another random prime and repeats the process until all zu differ by
at least 2; let p, zu denote this final set of numbers;

22

Chapter 4. Garbled Circuits

5. Alice sends the prime p and the following 10 numbers to B : z1, z2, . . . , zi

followed by zi+1, zi+1+1, . . . , z10+1; the above numbers should be interpreted
in the (mod p) sense.

6. Bob looks at the j-th number (not counting p) sent from Alice, and decides
that i ≥ j if it is equal to x mod p, and i < j otherwise.

7. Bob tells Alice what the conclusion is.

This protocol enables Alice and Bob to correctly determine who is richer without
either of them gaining more than this exact information.

Alice does not gain any more knowledge about Bob’s wealth except for him sharing
the final result with her, which is merely whether it is more or less compared to
hers. While this value is derived from one of the values encrypted with Alice’s key,
it does not leak any information because the key itself is chosen randomly and all
values encrypted with it (in this case 10 different values) are equally likely to be
chosen by Bob.

Bob knows the random number he has chosen in step 1 of the protocol and its
encrypted value, hence he also knows the value of zj. From this knowledge, however,
Bob cannot draw any conclusions in regard to the true values of the other numbers
he received from Alice - any zu 6= zj may still be zu or zu + 1.

4.1.2 Oblivious Transfer

Oblivious transfer is a crucial component in evolving Yao’s solution into garbled
circuits because the latter relies on the exchange of data between all parties involved.
The protocol used in garbled circuits is 1-2 oblivious transfer.

Assuming Alice is the sender who has two secret messages m0 and m1, but wants
to make sure that Bob, the receiver in this scenario, only learns one of them. Bob
on the other hand is in possession of a secret bit b and wants to learn mb without
disclosing b to Alice.

In his thesis on garbled circuits, Ignacio Navarro detailed a simple example of this
protocol [19]:

1. Alice generates two asymmetric key pairs (pub0, priv0) and (pub1, priv1).

2. Bob generates a symmetric key K and, with the help of his secret bit b,
encrypts K as c = Encpubb(K).

23

Chapter 4. Garbled Circuits

3. Alice decrypts both c0 = Decpriv0(c) and c1 = Decpriv1(c). One of the two
will correctly decrypt K but Alice does not know which, in this example we
assume c0 = K.

4. Alice sends c′0 = Encc0=K(m0) and c′1 = Encc1(m1).

5. Bob now decrypts both messages DecK(c
′
0) = DecK(EncK(m0)) = m0 and

DecK(c
′
1), with the latter being gibberish and him identifying the first message

as the correct one.

Note that this will only work if Alice does not cheat and can thus be considered a
trusted party in this scenario.

4.1.3 Boolean Circuits

Boolean Circuits are essentially made up of logic gates. Each gate g can be repre-
sented as a function with two input wires and one output wire:

g : {0, 1} × {0, 1} → {0, 1}

Each wire has one of two possible states: {0, 1}

Taking the definition from Bellare et al. [2], a boolean circuit can be described as
a 6-tuple f = (n,m, q, A,B,K) with n ≥ 2 inputs to the circuit, m ≥ 1 being the
number of outputs and q ≥ 1 the number of gates.

Given n inputs and q gates, a boolean circuit r consists of n + q wires, with each
input labelled as I = {1, . . . , n} and each gate as G = {n + 1, . . . , r}. The set of
wires W = {1, . . . , r} is partitioned into input wires I = {1, . . . , r−m} and output
wires O = {r −m+ 1, . . . , r}, resulting in W = I ∪O.

Each individual gate’s incoming wires can be expressed by the function A,B : G→
I, while the gates themselves are described as K : G× {0, 1}2 → {0, 1}.
A : G→ W\O is a function to identify each gate’s first incoming wire and B : G→
W\O identifies each gate’s second incoming wire.

To prevent the occurrence of cyclic graphs, A(g) < B(g) < g is a crucial requirement
for any gate g ∈ G. This simply establishes that no wire is used twice as an input
to any given gate.

24

Chapter 4. Garbled Circuits

4.1.4 Garbling and Evaluation

A garbled circuit is nothing other than a boolean circuit with obfuscated truth tables.
So rather than using the true inputs (0 or 1), each input is assigned a random label.
These labels are unique for each possible input of each gate’s input wire, with the
exception of output wires that serve as input wires for a subsequent gate.

The protocol typically involves a garbler and one or more evaluators. The garbler is
responsible for essentially creating and obfuscating the circuit, while the evaluator
adds their own input to the already garbled circuit and evaluates it to learn its
output.

In the following example, Alice takes on the role of the garbler and Bob takes on
the role of the evaluator [19].

Garbling

1. Assuming Alice already converted her function into a circuit, she first needs
to encrypt each possible input bit (0, 1) of each of the circuit’s wires. The
resulting values are called labels. All of these labels are randomly created.

2. For Bob to be able to later make sense of the labels and correctly determine
the circuit’s output label without learning any intermediate values, we need to
find a way to traverse the circuit properly solely based on the provided input
labels.
Given two incoming labels kj

aandkk
b and a gate function g, Bob has to determine

the gate’s output label kg(j,k)
c correctly, even though he does not know any of

the true values behind the labels. This can be achieved using the following
mapping function:

f : ki
a × kj

b → kg(i,j)
c

f must be strictly bijective - meaning that no two different combinations of
input labels are allowed to yield the same output label.
Considering that the output labels are encrypted, going forward f is set to be:

f(ki
a, k

j
b) = Enc(kia,kjb)(k

g(i,j)
c)

3. Now, Alice computes f for every possible combination of inputs of each in-
dividual gate in the circuit. Afterwards she randomly permutes the resulting

25

Chapter 4. Garbled Circuits

truth tables such that the output value cannot be determined from the row
and sends the result to Bob.

This is what a garbled AND gate looks like when applying f :

c10 = f(k1
a, k

0
b) = Enc(k1a,k0b)(k

0
c)

c11 = f(k1
a, k

1
b) = Enc(k1a,k1b)(k

1
c)

c01 = f(k0
a, k

1
b) = Enc(k0a,k1b)(k

0
c)

c00 = f(k0
a, k

0
b) = Enc(k0a,k0b)(k

0
c)

Evaluation

1. Bob now requests the garbled input value (either k0
b or k1

b) for his private
input. He does this via Oblivious Transfer so Alice does not learn anything
about his true input value.

2. Alongside his own garbled input value Bob also receives Alice’s input ki
a as well

as the possible ciphertexts ci,j from the garbled table. He does not know which
truth value Alice’s garbled input represents, even though he is in possession
of the garbled table because the entries are in random order.

3. Due to the fact that the ciphertexts are ordered randomly, to find the correct
output Bob needs to decrypt all of them by applying the decryption function
of the scheme he agreed on with Alice beforehand. Regardless of the chosen
scheme, this is always the inverse of f .
For example, with k1

b , k
0
a as inputs this would equal to:

f−1(ci,j)Dec(k0a,k1b)(ci,j)

4. Bob then sends the label he acquired to Alice who in turn informs him about
the value it represents. Should the label be an intermediate output of a circuit,
Bob uses it as an input for the next gate of the circuit instead of sending it
to Alice. Only the final output of a circuit is decrypted and sent back to the
garbler.

4.2 Garbling Scheme

Before we can discuss security properties or possible optimizations, it is necessary
to formally define what garbled circuits and their functionalities entail. In their

26

Chapter 4. Garbled Circuits

paper Foundations of Garbled Circuits, Bellare et al. show how to achieve this by
establishing so-called garbling schemes [2].

Figure 9: An overview of a garbling scheme’s components [2]

A garbling scheme is a five tuple of algorithms G = (Gb,En,De,Ev,ev):

• Gb: The garbling algorithm takes the original function f (the circuit that
should be garbled) and a security parameter k ∈ N as inputs. Executing it
results in a triple (F, e, d) where F is the garbled function, e is an encoding
function and d is a decoding function: (F, e, d)← Gb(1k, f).

• En: The encoding function e mentioned above maps each initial input x ∈
{0, 1}n to its respective garbled representation X = e(x) = En(e, x).

• De: Similarly, the decoding function d maps each garbled output Y to its final
output value y = d(Y) = De(d, Y).

• Ev: The evaluation algorithm takes the garbled function F and a garbled
input X and maps the latter to a garbled output Y = F (X) = Ev(F,X).

• ev: This algorithm represents the evaluation of the circuit (or original func-
tion) f as a whole: ev(f, x) = f(x).

4.3 Security Properties

A garbling scheme like the one described in the previous section has three key
security properties - privacy, obliviousness and authenticity [31].

• Privacy: Ensures that (F, x, d) does not reveal more information about x

than f(x) - to be precise, a simulator S exists that takes (1k, f, f(x)) as input
and produces an output that is indistinguishable from (F,X, d)

• Obliviousness: (F,X) should reveal no information about x - to be precise,
a simulator S exists that takes (1k, f) as input and produces an output that
is indistinguishable from (F,X)

27

Chapter 4. Garbled Circuits

• Authenticity: Given only (F,X), no adversary should be able to produce
Y ′ = Ev(F,X) such that De(d, Y ′) = y, except with negligible probability

4.4 Optimizations

Due to the high computational demands, various improvements to the classical gar-
bled circuits protocol have been proposed, from parameters like circuit size to the
number of decryptions necessary for each gate. The individual optimization steps
will be briefly listed in this section with a few of them being discussed in greater
detail in chapter 9.

Circuit size is one of the first parameters that come to mind when thinking about
optimizing the protocol. Just reducing a circuit by one gate leads to the decrease of
the circuit’s garbled table by four entries and therefore reduces the amount of data
that needs to be sent to the evaluator. Though decreasing the circuit size might be
an advantage considering the communication between the involved parties, doing so
might lead to more resource-intensive calculations to be executed by the evaluator.
So whenever optimizations to one of these parameters are considered, they need to
be as balanced as possible in order to not negatively impact the overall performance
of the protocol.

size per gate calls to H per gate
generator evaluator

technique XOR AND XOR AND XOR AND
classical [30] 4 4 4 4 4 4
point-permute [1] 4 4 4 4 1 1
row reduction (GRR3) [21] 3 3 4 4 1 1
row reduction (GRR2) [21] 2 2 4 4 1 1
free XOR + GRR3 [12, 16] 0 3 0 4 0 1
fleXOR [11] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1
half gates [31] 0 2 0 4 0 2

Table 1: Optimizations of garbled circuits. Size is number of ’ciphertexts’ (multiples of k
bits).

28

Chapter 4. Garbled Circuits

In their paper Two Halves Make a Whole, Zahur, Rosulek and Evans summarized
the methods to reduce the data needed to transmit a garbled gate available then
and introduced their own method as well [31].

The point-and-permute optimization introduces a so-called select bit that is ap-
pended to each wire label, so that the wire’s labels have opposite select bits. This
allows for the garbled table to be arranged by these bits without leaking any infor-
mation about the underlying labels’ values. While this does not reduce the amount
of ciphertexts per gate, it still reduces the computational cost due to the fact that
the evaluator can now directly select the label they need to decrypt.

Garbled row-reduction on the other hand is a form of optimization that reduces the
number of ciphertexts per gate. Instead of assigning random labels to each wire,
one of its labels is chosen in such a way that the corresponding ciphertext is 0. In
doing so, the amount of ciphertexts is reduced to three because the 0-text does not
need to be evaluated. This method has later been extended to further reduce each
gate to 2 ciphertexts.

Another effective optimization is the free-XOR technique which eliminates the need
for ciphertexts for all XOR gates in a given circuit. This is achieved by establishing
a fixed relationship between the incoming wires and XORing these wires directly
instead of using an XOR gate. Because this technique is not compatible with all of
the other optimizations, it has been generalized into the fleXOR method, which can
be combined with GRR2 for AND gates. This combination can significantly reduce
the size of a circuit that contains a lot of AND gates.

The new method introduced in the aformentioned paper is known as the half-gates
technique. It is compatible with free-XOR and allows for any AND gate to be
garbled with only 2 ciphertexts. Half-gates are defined as AND gates for which one
of the involved parties knows one of the inputs - effectively cutting the amount of
ciphertexts needed in half by leveraging the individual parties’ knowledge.

4.5 Summary

Considering that Yao’s protocol is one of the foundational cornerstones of secure
multi-party computation, it comes with some great advantages. Arguably, the most
important one is its strong privacy guarantee in semi-honest settings because none
of the involved parties can learn anything about the other parties’ inputs. The
protocol can also be generalized to serve a variety of different scenarios, the only

29

Chapter 4. Garbled Circuits

limiting factor being that these scenarios need to be representable as a boolean
circuit. Originally intended for two-party secure computation, Yao’s protocol has
been extended and improved over the years and can now also be used in multi-party
contexts and malicious settings.

The obvious disadvantages of Yao’s protocol have mostly stayed the same since
the beginning, although the impact of some of these disadvantages has lessened
over the years. There still are concerns about the protocol’s efficiency because
its computational effort increases significantly for more complex applications that
require very large circuits. This also leads to a higher communication cost between
the involved parties. Another drawback is the fact that any circuit created can only
be used once. As soon as new inputs are added, new circuits have to be generated
in order to prevent the exposure of anything else than the circuit’s final output.
Taking a single AND-gate with inputs a and b as an example, when executing the
circuit twice with differing values for a but an unchanged value for b, an adversary
would obtain different outputs for b = 1. This is in direct violation of the protocol’s
security guarantee and thus cannot be allowed.

While the protocol is secure in semi-honest settings, there still are potential vul-
nerabilities that may be exploited. In malicious environments, it can easily be
compromised when adversaries intentionally deviate from the protocol. A malicious
garbler could simply construct a circuit that leaks information about the involved
parties’ inputs, while a malicious evaluator could try to reuse circuits with different
inputs. Information may also be leaked accidentally, for example due to faults in the
used OT protocol that may reveal the values chosen by the evaluator. Adversaries
may also derive information about the computed function from the circuit’s size or
structure, as well as from the time it takes to evaluate the circuit. The latter is
known as a side-channel attack.

30

Chapter 5. Machine Learning

5 Machine Learning

The following chapter provides a brief overview over the principles of machine learn-
ing, its main paradigms and some algorithms that might be suitable to be trained
using garbled circuits.

5.1 Introduction

Machine learning systems offer an innovative approach to problem-solving through
their ability to automatically learn and improve from experience. Over the years
these systems became invaluable tools in tackling complex tasks across various do-
mains. Machine learning algorithms can generalize from given samples, which in
turn enables them to handle previously unseen data and adapt to new situations.
They are primarily used in dealing with problems too complex to solve through
conventional programming approaches or when the volume of data accompanying a
given problem is too large to be handled by humans.

5.2 Paradigms

Usually, the topic of machine learning is divided into three core paradigms: su-
pervised learning, unsupervised learning and reinforcement learning. The main dif-
ference between these three lies in their ability to solve specific tasks and in their
representation of the resulting data. The most commonly used paradigm is super-
vised learning because the other two can often not be applied to the task at hand.
In some cases, however, it is possible to simply choose one’s favourite method, as
well as use different paradigms together.

Supervised Learning

The main principle of supervised learning, as the name suggests, is to guide the
system’s learning process, which is why it not only receives a set of inputs but also
the corresponding outputs. These sets of data are called labeled examples. The goal

31

Chapter 5. Machine Learning

here is to train a predictive model that is able to guess the output of a previously
unseen input, based on the examples provided to it.

Unsupervised Learning

The second most used paradigm is unsupervised learning, which in contrast to su-
pervised learning receives neither input nor output data, instead it draws from a
given set of examples. This method is commonly utilized for tasks that revolve
around clustering with the goal of dividing the given set into groups that feature
similar characteristics.

Reinforcement Learning

The third paradigm is called reinforcement learning, which enables autonomous
agents to learn from interacting with an environment provided to them. This differs
from the previous learning paradigms because the environment is not a fixed set of
data but rather an external system. Starting out, the agent interacts randomly with
the environment and gradually learns from its experience in order to perform better.
The agent’s behaviour is usually reinforced by rewarding it when it performs a given
task well (hence the name). Reinforcement learning is often used to teach robots
how to interact with the real world through simulated real world environments.

5.3 Suitable Algorithms

When it comes to picking a suitable algorithm to be used in combination with
garbled circuits, the main prerequisite is that any calculations must be performed
exclusively on values that have a binary representation, e.g. numerical values like
integers. In order to not unnecessarily increase the complexity of the planned im-
plementation, we should pick a simple task with as few steps as possible.

The first task that comes to mind is regression, which is a supervised learning task
with the goal of predicting a numeric value. Numerous real world problems like
housing prices, salary growth and population sizes can be described as a regression
problem. The simplest (and also oldest) of these methods is linear regression, which
has been widely adopted for both statistics and machine learning. It estimates the
relationship between a dependent variable (scalar response) and either one or more
independent variables (regressor).

32

Chapter 5. Machine Learning

The proof of concept will focus on training a simple linear regression model with a
single independent variable. An in-depth explanation of the simple linear regression
model will be provided in chapter 7.1.

Some other models that might be suitable for an implementation using garbled
circuits include, but are not limited to:

1. Logistic Regression: These models involve linear operations that could be
trained similarly to a linear regression model, followed by a logistic function
for classification. The latter could be approximated by mapping the Newton-
Raphson method to garbled circuits because it utilizes operations that can
entirely be represented by arithmetic logic circuits.

2. Decision Trees and Random Forests: Decision trees are a form of information
mapping based on comparisons. A single tree is made up of branches for
each comparison (or logical decision) which can be represented with garbled
circuits. With proper templates in place, the recursions during the training
process could be handled efficiently as well. This could be elevated to random
forests since they are an aggregation of multiple decision trees.

3. Neural Networks: Basic neural networks might also be suitable for garbled
circuits, since they primarily involve linear operations. The limiting factor here
would be transforming the activation functions of the given network - while
some of them can be approximated, others cannot and their transformation
could easily become too costly, especially within deeper networks.

33

Chapter 6. Cloud Computing

6 Cloud Computing

The following chapter gives a brief overview of cloud computing, its technologies,
architecture and service models. Trust and confidentiality are also touched upon
since they are one of the focal points of this thesis.

6.1 What is Cloud Computing?

The purpose of cloud computing is to provide network access to resources as well
as services on-demand and scalable to the individual requirements of users. Said
resources or services include (but are not limited to) servers, storages and applica-
tions.

According to the NIST Definition of Cloud Computing, the cloud model con-
sists of the five essential characteristics below [15]:

• On-demand self-service: Customers can utilize the cloud’s computing capabil-
ities without the need of human interaction with the provider.

• Broad network access: Cloud services can be accessed easily through standard
platforms like workstations, laptops or mobile phones.

• Resource pooling: The provider’s resources are pooled to serve multiple cus-
tomers with varying demands at once. These resources are assigned and reas-
signed dynamically as needed.

• Rapid elasticity: Capabilities can be both provisioned and released elastically
according to customer demand, often automatically.

• Measured service: Resource usage can be monitored, controlled and reported
to provide transparency for both customers and providers alike.

These characteristics alone already highlight a few key advantages of cloud com-
puting. Cloud services can be accessed worldwide and from basically any device,
instantly providing a user with their desired resources. Since cloud providers typ-
ically operate on a large scale, they offer their services at a relatively low cost.
Customers only have to pay for the resources they actually use and don’t need to

34

Chapter 6. Cloud Computing

invest in on-premise solutions that might require large upfront investments or high
maintenance costs. Cloud services are especially valuable to users who need a lot of
resources either irregularly or at short notice.

6.2 Architecture and Deployment Models

Cloud computing architecture encompasses different deployment models based on
the levels of control, scalability and security required by customers (primarily orga-
nizations) [15].

• Private cloud: Intended for exclusive use by a single organization, usually
consisting of various customers. Private clouds are either owned, managed and
operated by the organizations themselves or a third party, on or off premises.

• Community cloud: This deployment model is a form of private cloud intended
for use by a group of customers from one or more organizations with shared
concerns.

• Public cloud: Provisioned for use by the general public. Even though public
clouds are owned, managed and operated by academic, business or government
organizations they exclusively exist on the premises of the cloud provider.

• Hybrid cloud: This cloud infrastructure is a combination of two or more of
the previously mentioned deployment models, that, while remaining unique,
are bound together by some form of technology that enables both data and
application portability - otherwise it would not be possible to combine clouds
that differ in architecture. Hybrid deployment models are often used for load
balancing large amounts of data or requests between clouds.

To optimize resource utilization and enhance flexibility, cloud providers leverage
virtualization technologies that allow multiple virtual machines to run on the same
hardware. In order to properly scale and distribute physical resources, clouds typ-
ically employ Hypervisors that assign these physical resources depending on the
individual virtual machines’ demands.

6.3 Service Models

Cloud computing employs three different service models, based on the individual ca-
pabilities provided to the consumer. All of these models have one thing in common,
though: the provider always controls their deepest layers, which include the net-
working infrastructure, physical servers, storage infrastructure and hypervisors.

35

Chapter 6. Cloud Computing

They are typically categorized as follows [15]:

• Infrastructure as a Service (IaaS): Provides virtualised computing resources
over the internet, allowing users to manage operating systems, storage and
deployed applications while the provider maintains the physical hardware.

• Platform as a Service (PaaS): Offers a development environment where users
can create, test and deploy applications without managing the underlying
infrastructure.

• Software as a Service (SaaS): Provides access to applications run on cloud
infrastructure, eliminating the need for installation and maintenance on local
devices.

These service models enable organisations to choose the level of control and respon-
sibility that best suit their needs, from fully managed software solutions to more
flexible infrastructure options.

Figure 10: An overview of the different cloud services [13]

6.4 Trust and Confidentiality

The level of data confidentiality is strongly tied to the chosen cloud’s deployment
model [28].

Theoretically, a public cloud provider could access all of the data that is stored or
processed on their hardware, regardless of the employed service model, leaving users
with no guarantee of confidentiality. The same is true for private cloud providers,

36

Chapter 6. Cloud Computing

with one minor (but significant) difference: private cloud providers are deemed trust-
worthy - internal attacks not taken into account - because they typically operate on
a non-commercial basis. Using a private cloud ensures a high level of confidentiality
for customers.

When it comes to hybrid cloud environments, it highly depends on which tasks are
chosen for execution on a public cloud. If these tasks do not handle any confidential
data, they can be executed without the need to worry whether the data is handled
securely but if they do, the hybrid cloud’s level of confidentiality essentially drops
down to that of a public one.

37

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

7 Privacy-Preserving Machine Learning with Garbled
Circuits

The following chapter will demonstrate an integration of garbled circuits into a
suitable machine learning algorithm.

For this purpose the linear regression model has been chosen, since it is one of the
easiest algorithms to be broken down into smaller steps which can then be translated
into individual binary circuits.

7.1 The Linear Regression Model

A linear regression model describes the dynamics between a dependent variable yi

and one (or multiple) independent variables xi. It is a statistical model used to
make predictions on these sets of data through estimating the coefficients of the
underlying linear equation. Linear regression fits a straight line to minimize errors
between given and predicted outputs, where the best fit line contains the least
errors.

The simplest linear regression calculation uses the mean squared error (MSE) func-
tion to find the best fit for a provided set of data. The value of the dependent
variable is then estimated from the independent variables.

Some applications of this model include forecasting effects or trends (predictions on
the dependent variable) and determining the strength of given predictors (assessing
the influence of individual independent variables on the dependent variable).

The equation assuming only one independent and the corresponding dependent vari-
able is called Simple Linear Regression and is described as follows:

ŷi = β0 + β1xi

• ŷi is the predicted output of the dependent variable

• β0 is the intercept or constant

38

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

• β1 is the slope or regression coefficient

• xi is the independent variable

The aim is to find the best values for β0 and β1, in order to achieve the best-fit
regression line on the given data. This is done using a so-called cost-function (or
loss-function) - in this case, the aforementioned mean squared error (MSE) function
which simply calculates the average of the squared errors between the actual and
predicted values.

MSE =
1

n

n∑
i=1

(ŷi − yi)
2

The cost function has to be differentiated and calculated for both slope and intercept
(initialised to 0, randomly chosen or calculated from xi and yi) and both values
need to be updated iteratively until minimum cost is reached (a method called
Gradient Descent). The MSE indicates how accurately the model is able to predict
the dependent value, the lower the MSE, the better the fit and thus, the model’s
accuracy.

7.2 Linear Regression in Machine Learning

Even though linear regression is mainly a statistical model, it plays a pivotal role in
machine learning, especially in the field of predictive modelling since it focuses on
making the most accurate predictions. In linear regression, the relationship between
the dependent and independent variables is straightforward and clearly showing the
influence of the used predictors. Because of their simplicity and training speed, linear
regression models are also often used as baseline models or extended to more complex
models such as multiple linear regression, logistic regression or neural networks.

7.3 Breaking down the model

To use garbled circuits during the training phase of a simple linear regression model,
it has to be broken down into smaller parts that can be represented as binary circuits.
This step is necessary because garbled circuits are constructed using logic gates.

Since all calculations have to be performed bit-wise, it requires more operations
the more bits the input values have. In order to keep the breakdown simple, this

39

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

section will not include details of the circuit creation or its requirements. Both will
be discussed in following sections.

Assuming a simple dataset with one independent variable xi and corresponding
dependent variable yi:

(x1, y1), (x2, y2), . . . , (xn, yn)

The first important step is to determine the starting values for β0 and β1 using the
Ordinary Least Squares method, thus directly training the model with a minimised
error.

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
β0 = ȳ − β1x̄

0 or random values would also be valid but might necessitate more iterations to im-
prove the model’s accuracy later. Ideally, the number of iterations is kept to a mini-
mum when using garbled circuits because this process is quite resource-intensive.

Both formulas of the OLS method require the means of xi and y1, which are calcu-
lated as follows:

x̄ =
1

n

n∑
i=1

xi ȳ =
1

n

n∑
i=1

yi

All values of the respective variables are added up and the result is divided by
the number of values. Even though this is a fairly straightforward calculation,
implementing it with binary circuits requires splitting it up into simpler operations
that are carried out sequentially:

1. Add the first two values of xi

2. Add the next value to the previous result

3. Repeat step 2 for all remaining values of xi

4. Once the above steps are completed, divide the acquired sum by the number
of values in xi

Repeat for yi.

40

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

The mean calculation can be performed using binary adder-subtractor circuits. In
fact, when implemented correctly, all operations can be carried out using these cir-
cuits, since multiplication is repeated addition and division is repeated subtraction.
The proof of concept will make use of this through templates derived from an initial
adder-subtractor circuit.

Next, we calculate the numerator of β1,
n∑

i=1

(xi − x̄)(yi − ȳ):

1. Separately subtract the mean x̄ from each value of xi

2. Separately subtract the mean ȳ from each value of yi
3. Multiply the resulting sets of steps 1 and 2

4. Sum up the resulting values of step 3

The denominator
n∑

i=1

(xi − x̄)2 only requires two additional steps, since xi − x̄ has

already been calculated:

1. Reuse the previously calculated result of xi − x̄ and multiply it by itself

2. Sum up the resulting values of step 1

With both the numerator and the denominator calculated, we can determine the
slope β1 by dividing them through repeated subtraction.

Lastly, the slope β0 can also be calculated in another two simple steps:

1. Multiply x̄ by β1

2. Subtract the result of step 1 from ȳ

This concludes the breakdown of a single iteration of training. We have discovered
that all basic arithmetic operations are required to complete the training process.
The construction of the respective circuits needed for training will be detailed in
later sections.

Now the slope and intercept have been determined, the linear regression function can
be applied to arbitrary test sets (or input values) as a means to make predictions.

ŷi = β0 + β1xi

Due to its simplicity, this function only needs to be split into two parts which can
later be translated into binary circuits - one for the multiplication of the slope by the

41

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

input set and one for the addition of the intercept - proving that not only training
but also prediction is possible in the given context.

Now all required operations have been identified, we will have a look at the binary
circuits that will serve as the building blocks for our proof of concept.

7.4 Constructing the Binary Circuits

The previous section showed that all main arithmetic operations (addition, sub-
traction, multiplication, division) have to be translated into binary circuits to allow
training, prediction and optimisation of a linear regression model.

Figure 11: AND, OR & XOR ANSI symbols

In order to apply the simplest type of garbling to these circuits later on, all of them
are constructed exclusively of AND, OR and XOR gates.

A B A ∧B
0 0 0
0 1 0
1 0 0
1 1 1

A B A ∨B
0 0 0
0 1 1
1 0 1
1 1 1

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Table 2: AND, OR & XOR truth tables

7.4.1 Addition

The most basic operation generally is the addition of two binary digits (or bits), the
sum of which either produces another single digit or - when both summands are 1 -
two digits. In the latter result the higher significant bit is called the carry bit. To
perform this operation, a so-called half-adder is needed.

42

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 3: Half-adder truth table

There are multiple ways to implement such a half-adder but since it is a crucial
building block of the next type of adder, it is built with an XOR gate (producing
the sum bit S) and an AND gate (producing the carry bit C).

S = A⊕B C = A ·B

Figure 12: Half-adder schematic

In order to properly deal with carry bits and later even add numbers of arbitrary bit
lengths, we have to construct an adder that does not only take the two summand
bits but also the carry-out of a possible previous operation. This can be achieved
with a full-adder that can be implemented with two half-adders and a single OR
gate.

43

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

A B Cin Sum Carry out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 4: Full-adder truth table

A single full-adder can only add two bits (and a previous carry), so we need to find
an implementation that leverages the usage of full-adders and thus is capable of
adding two binary numbers of n bits.

Figure 13: Full-adder schematic

Let’s consider two 4-bit numbers as an example. Starting with the least significant
bit of both numbers, each pair of bits is added individually through a full-adder. If
an addition produces a carry-out it is used as an input when adding the pair of bits
one position higher.

Since each pair of bits is added through one full-adder, two n-bit numbers always
require n full-adders. A circuit composed of full-adders connected in this way is
called a binary parallel adder (or ripple-carry adder).

44

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

7.4.2 Subtraction

The subtraction of two n-bit numbers can conveniently be done through addition,
by means of complement. Any subtraction A − B can be performed by taking
the Two’s Complement of B and adding it to A. The Two’s Complement can be
obtained through inverting each bit of B (also called the One’s Complement) and
adding 1 to the least significant pair of bits.

Figure 14: A 4-bit parallel adder-subtractor with a mode input control line

Any binary adder can be upgraded to a binary adder-subtractor simply by including
an XOR gate with each full-adder. To control the operation carried out, an input bit
M (representing the mode) is added to the circuit and each XOR gate receives both
M and one of the input bits of B. When M = 0, the full-adders receive the value of
B with an input carry of 0 and the circuit performs an addition. When M = 1, all
bits of B are inverted and 1 is added through the input carry, resulting in the circuit
adding the Two’s Complement of B to A and thus performing a subtraction.

7.4.3 Multiplication

Binary multiplication can be done by successive additions and shifting.

Like the previous operations, multiplication starts with the least significant bit first.
If the multiplier bit is 1, the multiplicand bit is copied down, otherwise 0. The
numbers in successive lines are each shifted one position to the left compared to
the previous one. Finally, the sum of all these numbers results in the product of
multiplicand and multiplier. While this form of multiplication is fairly easy, it has to
be modified slightly in order to form a proper binary circuit. Instead of storing and

45

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

adding all binary numbers representing the 1’s of the multiplier, they are calculated
iteratively in pairs with the help of a parallel adder.

Furthermore, instead of shifting the multiplicand to the left, the partial product is
shifted to the right - which directly results in the correct relative positions of both.
If any of the numbers are negative, the operation will use their respective Two’s
Complement, which will also be the output should the result of the multiplication
be negative.

Figure 15: The schematic of a 4-bit parallel multiplier

7.4.4 Division

Binary division is done by repeated subtraction, thus allowing us to build on the
already established adder-subtractor. The first step is to determine the signs of both
dividend and divisor in order to later determine the sign of the quotient. Then the
quotient will be initialised to 0. Negative numbers are converted into their positive
equivalents through calculating their Two’s Complement.

Next, the divisor is subtracted from the dividend to acquire the first partial remain-
der and 1 is added to the quotient. If the partial remainder is positive, the divisor is
subtracted from it and 1 is added to the quotient to get the next partial remainder.
These steps are repeated for every partial remainder until it is either 0 or negative.

At the end of this operation, the quotient equals the number of times the divisor
has been subtracted. Should the quotient be negative it has to be converted into its
Two’s Complement in order to get the correct result of the division.

46

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

7.5 Research & Development Design

The following section provides a high-level overview of the implementation plan and
the proposed workflow as well as its scope and limitations.

7.5.1 Implementation Plan

The proposed proof of concept utilizes garbled circuits to securely train a linear
regression model. Its aim is to ensure the privacy of all given inputs throughout the
training process. The linear regression process is broken down into its individual
calculation steps, which are then implemented as logic circuits in order to enable
garbling.

As a prerequisite, the implementation also includes a data preparation layer, since
it is necessary to convert all input data from decimal to signed binary.

• Data Preparation Layer

– Input Data Conversion

• Binary Calculations

– Half- and Full-Adders

– Ripple-Adder-Subtractor

– n-bit Multiplier

– n-bit Divisor

• Garbled Circuits

– Gates

– Wires

– Labels

– Circuit Generation

– Garbling Methods

– Evaluation Methods

• Garbled Circuit Templates for Secure Linear Regression

• Exemplary Model Training

• Exemplary Prediction

47

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

7.5.2 Proposed Workflow

To keep the implementation effort within the scope and time frame of this thesis, we
will not introduce a second party with additional training data. Instead the Garbler
simply wants to train their linear regression model in a cloud environment, without
risking to expose their data to the cloud provider. In this use case the cloud serves
as the evaluator instead of another party. This type of circuit can be described as a
non-interactive garbled circuit with the following workflow:

1. The Data Preparation Layer converts the Garbler’s training data from decimal
to signed binary

2. The Garbler translates the linear regression computations into their respective
binary circuits

3. They then garble all circuits created in the previous step, producing the re-
spective garbled tables and input labels for each wire (Note: when an input is
the result of a previous output, the input wire needs to be exactly the same
as the output wire to ensure that the circuit can be evaluated correctly)

4. The garbled circuit is then uploaded into the chosen cloud, which serves as
the Evaluator

5. The training method is then triggered in order to evaluate the circuit and
obtain the trained model after decrypting all final output labels

6. The Garbler can now extract the truth values from the labels to gain access
to the trained model

7.5.3 Scope & Limitations

It is important to keep in mind that the implementation is merely a proof of concept
to showcase that it is possible to train a machine learning model incorporating
garbled circuits into the process. While there will be an example of value prediction,
fully trained models or the performance of multiple iterations to increase the model’s
accuracy are not focal points of this thesis. Instead the focus lies on maintaining
the confidentiality of the training data and on evaluating the general suitability of
garbled circuits for the aforementioned process.

As mentioned in section 4.1.2, Yao’s garbled circuit protocol includes an oblivious
transfer protocol as well because it relies on the exchange of data between involved
parties. However, the exchange of data and consequently, an implementation of

48

Chapter 7. Privacy-Preserving Machine Learning with Garbled Circuits

oblivious transfer, is not required to answer the research question and will therefore
not be included.

The proof of concept includes test executions on a local machine that doubles as
the cloud environment. This was necessary due to the limited time frame of this
thesis. Afterwards, an evaluation is carried out that assesses the overall security of
the implementation. Additionally, it will take its performance and complexity into
account because both could be valid reasons to not utilize garbled circuits during
model training.

One of the biggest limitations encountered while setting up the implementation plan
was the fact that existing libraries could not be used due to two main reasons:

• The linear regression model needed to be broken down into smaller pieces than
offered by the commonly used frameworks. While some allowed for creating
custom models, there would have been no benefit in using them over developing
a custom implementation from the start.

• Other libraries, like Gabes, and some of their dependencies were simply too
old to be compiled on a MacBook with an ARM CPU.

Since Gabes was released under the MIT License and proved to be a straightforward
implementation of garbled circuits, it served as a blueprint for the corresponding
classes included in the proof of concept [18].

49

Chapter 8. Proof of Concept

8 Proof of Concept

The following chapter details a proof of concept that shows an integration of garbled
circuits into the training of a simple linear regression model, as well as touching
on a possible implementation of the linear regression equation in order to make
predictions. The proposed solution is written in Python since it’s both easy to
understand and widely used for machine learning purposes. The implementation is
partly derived from the Gabes package because it features implementations of all
crucial components of a garbled circuit, which can easily be modified to fit the use
case of this proof of concept.

8.1 Implementation

8.1.1 Data Preparation Layer

Following the implementation plan set up in the previous chapter, the first compo-
nent to be developed is the Data Preparation Layer, which handles the input data
conversion.

1 def convert_training_data(set_x, set_y, bit_len):
2 bin_x = ut.int_array_to_bin_array(set_x.tolist(), bit_len)
3 bin_y = ut.int_array_to_bin_array(set_y.tolist(), bit_len)
4 set_len = ut.int_to_bin_array(len(set_x), bit_len)
5

6 return bin_x, bin_y, set_len

Listing 1: Preparing the input data

In order to correctly execute all necessary operations, including negative numbers,
all input values, as well as the number of entries in the given test set, have to be
converted from decimal to signed binary. During conversion all binary numbers will
be set to a predetermined bit length to reduce the need for padding during circuit
creation and thus keep the computational cost as low as possible.

At this time, operations on floating point binary numbers are not part of the system,
hence all input values need to be integers.

50

Chapter 8. Proof of Concept

8.1.2 Binary Arithmetic Operations

Next, all necessary binary arithmetic operations have to be implemented. These
operations are crucial to prove that training a linear regression model using arith-
metic logic circuits is possible in the first place. The following implementations
will be used as blueprints for the corresponding garbled circuit templates, whenever
possible.

Not detailed here are auxiliary functions like negativity checks, shifting methods
or conversion functions. These can be found in the source code attached to this
document.

Throughout all functions signed binaries are used, since training sets or intermediate
calculation results may include negative values.

As previously explained in chapter 7, all operations are based on addition and for
this purpose both a half-adder and a full-adder are implemented.

1 def half_adder(bit1, bit2):
2 sum_ = bit1 ^ bit2
3 carry = bit1 & bit2
4 return sum_, carry

Listing 2: Half-adder function

The half-adder simply takes two bits and returns their sum and a possible carry.
Since model training requires the calculation of numbers of arbitrary bit length, we
have to construct a component that is able to take previous carry overs into account.
This is done through a full-adder that’s making use of the already established half-
adder.

1 def full_adder(bit1, bit2, carry_in):
2 sum1, carry1 = half_adder(bit1, bit2)
3 sum_, carry2 = half_adder(sum1, carry_in)
4 carry_out = carry1 | carry2
5 return sum_, carry_out

Listing 3: Full-adder function

Now we can simply chain together n full-adders in order to create a ripple-carry
adder that adds two n-bit numbers.

Knowing that subtraction A − B of n-bit numbers can be done by means of com-
plement, the ripple-carry adder is modified slightly to perform both addition and

51

Chapter 8. Proof of Concept

subtraction. This modification requires the use of the Two’s Complement that is
obtained through inverting each bit of B and then adding 1 to the least significant
pair of bits. Within a ripple-carry adder this can easily be achieved by including an
XOR gate with each of the n full-adders and adding a control line M . The latter
decides the mode of operation (addition or subtraction).

The resulting adder-subtractor looks as follows:

1 def binary_adder_subtractor(a, b, control):
2 max_len = max(len(a), len(b))
3 a = [0] * (max_len - len(a)) + a
4 b = [0] * (max_len - len(b)) + b
5

6 carry = control
7 result = [0] * max_len
8

9 # Iterate over each bit from LSB to MSB
10 for i in range(max_len - 1, -1, -1):
11 b_i = b[i] ^ control
12 result[i], carry = full_adder(a[i], b_i, carry)
13

14 # If there's a carry-out during addition, add it to the result
15 if carry and not control and not all(x == 0 for x in result):
16 result.insert(0, carry)
17

18 return result

Listing 4: n-bit adder-subtractor

Multiplication is done by successive addition and shifting the partial products ac-
quired through the individual additions. This operation will also utilize the Two’s
Component should one of the inputs or the result be negative.

1 def n_bit_multiplier(a, b):
2 n = len(a)
3 m = len(b)
4

5 # Determine the sign of the result
6 multiplicand_sign = a[0]
7 multiplier_sign = b[0]
8 result_sign = multiplicand_sign ^ multiplier_sign
9

10 # Convert to absolute value
11 if multiplicand_sign == 1:
12 a = twos_complement(a)
13

14 if multiplier_sign == 1:

52

Chapter 8. Proof of Concept

15 b = twos_complement(b)
16

17 product = [0] * (n + m)
18

19 for i in range(m):
20 if b[-(i + 1)] == 1:
21 shifted_multiplicand = a + [0] * i
22 product = binary_adder_subtractor(product[-(m + i):],

shifted_multiplicand, 0)↪→

23 product = [0] * (n - len(product)) + product
24

25 # Adjust the sign of the result if necessary
26 if result_sign:
27 product = twos_complement(product)
28

29 return product

Listing 5: n-bit Multiplier

Lastly, division is done by repeated subtraction, allowing us again to reuse the
adder-subtractor that has already been implemented.

1 def binary_division(dividend, divisor):
2 # Division by zero is not possible, just return
3 if is_zero(divisor):
4 return
5

6 """
7 Step 1: Determine if the signs of the dividend and divisor are the same

or different. This determines what↪→

8 the sign of the quotient will be. Initialize the quotient to zero.
Transform numbers into their uncomplemented form↪→

9 and pad where necessary.
10 """
11 dd_neg = is_negative(dividend)
12 dv_neg = is_negative(divisor)
13 q_neg = dd_neg ^ dv_neg
14

15 max_len = max(len(dividend), len(divisor))
16

17 quotient = [0] * max_len
18

19 if dd_neg:
20 dividend = twos_complement(dividend)

53

Chapter 8. Proof of Concept

21 else:
22 dividend = [0] * (max_len - len(dividend)) + dividend
23

24 if dv_neg:
25 divisor = twos_complement(divisor)
26 else:
27 divisor = [0] * (max_len - len(divisor)) + divisor
28

29 """
30 Step 2: Subtract the divisor from the dividend using two's complement

addition (final carries are discarded) to get↪→

31 the first partial remainder and add 1 to the quotient. If this partial
remainder is positive, go to step 3. If the↪→

32 partial remainder is zero or negative, the division is complete.
33 """
34 remainder = binary_adder_subtractor(dividend, divisor, 1)
35 quotient = binary_adder_subtractor(quotient, [0, 1], 0)
36

37 if is_zero(remainder) or is_negative(remainder):
38 return quotient
39

40 """
41 Step 3: Subtract the divisor from the partial remainder and add 1 to the

quotient. If the result is positive,↪→

42 repeat for the next partial remainder. If the result is zero or
negative, the division is complete.↪→

43 """
44 while True:
45 if is_zero(remainder) or is_negative(remainder):
46 break
47 remainder = binary_adder_subtractor(remainder, divisor, 1)
48 quotient = binary_adder_subtractor(quotient, [0, 1], 0)
49

50 if q_neg:
51 quotient = twos_complement(quotient)
52

53 return quotient

Listing 6: n-bit Division

54

Chapter 8. Proof of Concept

8.1.3 Garbled Circuits

Using Gabes as a blueprint, all components of a garbled circuit, including garbling,
evaluation and decryption methods, are implemented.

A Circuit is represented as a collection of Gates which are connected by Wires.
Each wire within the circuit is labelled using a Label object.

1 class Circuit:
2 def __init__(self, i_gates=None):
3 self.gates = [] if i_gates is None else i_gates
4 self.initial_wires = []
5 self.input_labels = {}
6 self.output_wires = {}
7 self.outputs = {}

Listing 7: Circuit object

Each Gate has two input Wire objects (left and right) and one output Wire object.

1 class Gate:
2 def __init__(self, g_type, create_l_wire=True, create_r_wire=True):
3 self.garbled_table = {}
4 self.gate_type = g_type
5 self.left_wire = Wire() if create_l_wire else None
6 self.right_wire = Wire() if create_r_wire else None
7 self.output_wire = Wire()

Listing 8: Gate object

In addition to setters for the input wires and the output identifier, this class handles
the garbling process for a given Gate instance.

The function implemented here represents the classical approach to garbled circuits,
where each output label of the gate’s truth table is encrypted using the accompany-
ing inputs as keys. The result is then shuffled to prevent the evaluator from deriving
information about the inputs from their respective rows in the truth table.

55

Chapter 8. Proof of Concept

1 def garble(self):
2 for label1 in self.left_wire:
3 for label2 in self.right_wire:
4 i1 = int(label1.get_value())
5 i2 = int(label2.get_value())
6 o = calc_output_value(self.gate_type, i1, i2)
7 encrypted_output = encrypt(label1.get_label() +

label2.get_label(), self.output_wire[o].get_label())↪→

8 self.garbled_table[(i1, i2)] = encrypted_output
9

10 items = list(self.garbled_table.items())
11 random.shuffle(items)
12 self.garbled_table = dict(items)
13

14 return self.garbled_table

Listing 9: Classical garbling function

In order to later learn the correct output of the circuit, each gate needs to be evalu-
ated individually because most output labels are used as inputs to subsequent gates
throughout the circuit. During evaluation the circuit is essentially reconstructed
from the first gate to the last, based on the inputs the evaluator provides.

1 def evaluate(self, inputs):
2 input_label1, input_label2 = inputs
3 for (i1, i2), encrypted_label in self.garbled_table.items():
4 if input_label1 == self.left_wire[i1] and input_label2 ==

self.right_wire[i2]:↪→

5 output_label = self.learn_output_label(encrypted_label, inputs)
6 return output_label
7 return None

Listing 10: Evaluation function

It is imperative to decrypt the output label when evaluating a given Gate object,
otherwise it cannot serve as an input to the next gate due to the fact that the input
values of its garbled truth table are stored as plaintext labels.

1 def learn_output_label(self, encrypted_output_label, org_inputs):
2 input_label1, input_label2 = org_inputs
3 output_label = decrypt(encrypted_output_label, input_label1.get_label()

+ input_label2.get_label())↪→

4 for out_label in self.output_wire:
5 if out_label.get_label() == output_label:
6 return out_label
7 return None

Listing 11: Decryption method for output labels

56

Chapter 8. Proof of Concept

As previously mentioned, all gates are connected by wires - each of which has two
randomly created labels representing the truth values 0 and 1 respectively, as well
as a flag that states whether it is one of the circuit’s initial input wires.

An instance of a Wire object is defined as follows:

1 class Wire:
2 def __init__(self, ident=None):
3 self._index = 0
4 self.identifier = ident
5 self.labels = [Label(False), Label(True)]
6 self.is_initial = False

Listing 12: Wire object

Ultimately, a Label object stores both the truth value it represents and its randomly
created 16 bit label string which will be used during circuit evaluation.

1 class Label:
2 def __init__(self, truth_value):
3 self.label = os.urandom(16)
4 self.truth_value = truth_value

Listing 13: Label object

8.1.4 Templates for Secure Linear Regression

Now that both binary arithmetic operations and garbled circuits are implemented,
we can use them as an outline and create reusable templates for secure linear re-
gression model training.

We need to implement templates for every arithmetic operation previously defined,
starting with the half-adder, the smallest of our building blocks and working our
way up to the more complex operations. Each template can either be built from
a string or from already established wires. The latter enables linking an arbitrary
combination of templates and thus facilitates constructing the desired training cir-
cuit.

All of these templates are structured similarly, starting out with the creation of
the necessary wires should these not be supplied, followed by flagging these wires
as the initial inputs to the template at hand. Then all gates of the desired circuit
and - where applicable - any subcircuits needed to execute the given operation are
created. Each template also provides a method for garbling and evaluation, with

57

Chapter 8. Proof of Concept

some including subcircuit evaluation whenever intermediate outputs are needed to
continue the respective operation.

1 class HalfAdderTemplate:
2 def __init__(self, l_wire=None, r_wire=None):
3 # Initialize new circuit
4 self.circuit = Circuit()
5

6 # Create input wires when not supplied
7 if l_wire is None:
8 l_wire = Wire('A')
9

10 if r_wire is None:
11 r_wire = Wire('B')
12

13 # Set initial wires
14 l_wire.set_as_initial()
15 r_wire.set_as_initial()
16

17 # Add XOR gate (sum)
18 xor_gate = Gate('XOR', l_wire, r_wire)
19 xor_gate.set_out_identifier('S')
20 self.circuit.add_gate(xor_gate)
21

22 # Add AND gate (carry)
23 and_gate = Gate('AND', l_wire, r_wire)
24 and_gate.set_out_identifier('C')
25 self.circuit.add_gate(and_gate)

Listing 14: The general template structure, applied to the half-adder

Just as described in section 8.1.2 the next component in need of a template is the
full-adder, which is making use of the already implemented half-adder template. For
better readability, only part of the template is shown - the full code listings can be
found in the attachment section of this thesis.

27 # Create first half adder, set output identifiers
28 ha1 = HalfAdderTemplate(l_wire, r_wire)
29 ha1.circuit.gates[0].set_out_identifier('SAB1')
30 ha1.circuit.gates[1].set_out_identifier('CAB1')
31 self.circuit.extend_circuit(ha1.circuit)
32

33 # Create second half adder, set output identifiers
34 ha2 = HalfAdderTemplate(ha1.circuit.gates[0].output_wire, c_wire)

58

Chapter 8. Proof of Concept

35 ha2.circuit.gates[0].set_out_identifier('SAB') # S = sum
36 ha2.circuit.gates[1].set_out_identifier('CAB2')
37 self.circuit.extend_circuit(ha2.circuit)
38

39 # Create OR gate, set output identifiers
40 or_gate = Gate('OR', ha1.circuit.gates[1].output_wire,

ha2.circuit.gates[1].output_wire)↪→

41 or_gate.set_out_identifier('CABO') # CO = carry_out
42 self.circuit.add_gate(or_gate)

Listing 15: The full-adder template making use of the half-adder template

From here we are moving on to initializing an n-bit adder-subtractor that is con-
structed with n full-adders and n additional XOR-gates (with the latter forming
a separate subcircuit) for bit inversion in case of subtraction. Due to creating all
these circuits individually, some of the wires need to be manually connected to their
respective target gates.

105 # Create corresponding XOR gate, set output identifier
106 gate = Gate('XOR', b_wire, m_wire)
107 gate.set_out_identifier(f'B{i}M')
108 self.xor_gates.append(gate)
109

110 if i == 0:
111 fa = FullAdderTemplate(a_wire, gate.output_wire, m_wire)
112 fa.circuit.gates[4].set_out_identifier(f'CO{i}')
113 self.full_adders.append(fa)
114 else:
115 fa = FullAdderTemplate(a_wire, gate.output_wire,
116 self.full_adders[i -

1].circuit.gates[4].output_wire)↪→

117 fa.circuit.gates[4].set_out_identifier(f'CO{i}')
118 self.full_adders.append(fa)
119

120 # Connect output of corresponding XOR gate
121 r_wire = self.xor_gates[i].output_wire
122 r_wire.set_as_initial()
123 self.full_adders[i].circuit.gates[0].set_right_wire(r_wire)
124 self.full_adders[i].circuit.gates[1].set_right_wire(r_wire)
125

126 # Create circuit from XOR gates
127 self.xor_circuit = Circuit(self.xor_gates)

59

Chapter 8. Proof of Concept

Listing 16: Creating the required circuits for the n-bit adder-subtractor template and
connecting them

Considering that the adder-subtractor circuit consists of multiple subcircuits - with
some of which relying on the outputs from other subcircuits - the evaluation method
has to be modified accordingly, so the individual circuits receive the correct inputs.

137 def evaluate(self, inputs, labels=False):
138 # Set input wires and evaluate XOR circuit
139 self.xor_circuit.set_input_wires()
140 if labels:
141 self.xor_circuit.set_input_labels(inputs.copy())
142 else:
143 self.xor_circuit.set_input_values(inputs.copy())
144 self.xor_circuit.evaluate()
145

146 # Declare additional inputs for full-adders
147 fa_inputs = self.xor_circuit.outputs.copy()
148 if self.upd_input_labels is not None:
149 fa_inputs.update(self.upd_input_labels)
150

151 # Evaluate each full-adder individually, otherwise crucial output labels
are lost↪→

152 c = 0 # counter for output values
153 for fa in self.full_adders:
154 fa.circuit.set_input_wires()
155 if labels:
156 fa.circuit.set_input_labels(inputs.copy())
157 else:
158 fa.circuit.set_input_values(inputs.copy())
159 fa.circuit.update_input_labels(fa_inputs)
160 fa.circuit.evaluate()
161 fa_inputs.update(fa.circuit.outputs.copy())
162 # Collect outputs
163 self.update_outputs(fa.circuit, c)
164 c += 1

Listing 17: Evaluating an adder-subtractor circuit

Before we can tackle multiplication, we need to define a template for the Two’s
Complement in case one (or both) of the numbers involved are negative, which may
also result in a negative output that needs to be represented correctly.

60

Chapter 8. Proof of Concept

If the most significant bit (MSB) of a signed binary number equals 1, the number is
negative. Unfortunately, it is not possible to determine this using the MSB’s label
only - we have to reveal the true value behind this label. While this technically
breaks with the protocol, the implementation can still be considered secure since
this intermediate value is never revealed to the evaluator. We will discuss whether
this may weaken the overall security in section 8.2.2.

When creating garbled circuits to perform binary long multiplication (i.e. calcu-
lating partial products, shifting them to the left and adding them together) the
incoming multiplicand and/or multiplier might have to be modified depending on
their sign.

101 def prepare_template(n, in_wrs, in_lbls):
102 mc_wi, mp_wi, mc_la, mp_la = split_inputs(in_wrs, in_lbls)
103 mc_n, mp_n = determine_signs(mc_la, mp_la)
104

105 if mc_n:
106 mc_wi, mc_la = transform_into_tc(n, 'A', mc_wi, mc_la)
107

108 if mp_n:
109 mp_wi, mp_la = transform_into_tc(n, 'B', mp_wi, mp_la)
110

111 wrs = mc_wi + mp_wi
112 lbls = mc_la
113 lbls.update(mp_la)
114

115 return wrs, lbls

Listing 18: Preparing the inputs of the n-bit multiplier template

Initially, the multiplier template only consists of the AND-gates required to cal-
culate the partial products of the incoming numbers. Since the bit length of the
multiplication result may be 2n, each partial product has to be sign extended to
this width.

101 def perform_sign_extension(amount, pp_id, pp_wrs, pp_lbls):
102 # Create new wires & labels for given partial product
103 ext_wrs = pp_wrs.copy()
104 ext_lbls = pp_lbls.copy()
105

106 for i in range(amount):
107 new_key = f'A{i + amount}{pp_id}'
108 if new_key not in pp_wrs.keys():

61

Chapter 8. Proof of Concept

109 ext_w = Wire(new_key)
110 ext_wrs[new_key] = ext_w
111 ext_lbls[new_key] = ext_w.get_label(0) # sign extension bits

are always 0↪→

112 return ext_wrs, ext_lbls

Listing 19: Performing sign extension by creating new wires and labels

During evaluation the partial products are then shifted and added to each other
by creating, rewiring and evaluating individual ripple-adder templates. In order
to shift each partial product correctly, we create new identifiers for each wire to
subsequently be able to provide the correct inputs to the adders.

101 def shift_keys(pp_wrs, pp_lbls, shift=0):
102 num_keys = len(pp_wrs)
103 new_keys = [f'B{(i + shift) % num_keys}' for i in range(num_keys)]
104

105 # Update wires and labels with shifted keys
106 sh_wrs = []
107 sh_lbls = {new_key: value for new_key, (_, value) in zip(new_keys,

pp_lbls.items())}↪→

108

109 for new_key, (old_key, value) in zip(new_keys, pp_wrs.items()):
110 value.set_identifier(new_key)
111 sh_wrs.append(value)
112

113 return sh_wrs, sh_lbls

Listing 20: Shifting the partial products by assigning new wire identifiers

The final template needed is the one for the division operation, which is per-
formed by repeated subtraction for which we simply use the already implemented
added-subtractor template. The division template is initially created with an adder-
subtractor circuit to subtract the divisor from the dividend and an additional adder-
subtractor circuit to determine the first quotient. After evaluating these initial cir-
cuits, the sign of the remainder has to be checked because the division algorithm
only needs to continue when the remainder is positive - this is done in the same way
as for the multiplication.

62

Chapter 8. Proof of Concept

Unfortunately, the division process requires revealing every single bit of the remain-
der because the division is also considered complete when the remainder equals
0. Although this might be interpreted as more information leakage, none of this
information is visible to the evaluator.

8.1.5 Training and Prediction

Lastly, we need to provide exemplary model training and prediction in order to de-
clare the proof of concept as successful. The individual calculations will be done both
in their binary and their garbled circuit versions alongside the original mathematical
representation, to show that they yield the same results.

Training

As mentioned in section 7.3, training a model essentially consists of four main calcu-
lation steps that are performed on given input values - the independent variable(s)
xi and the dependent variable yi.

Assuming a simple training set with a single independent variable xi = (1, 2, 4, 3, 5)

and its dependent variable yi = (2, 3, 5, 4, 6) we first need to determine the individual
mean of both variables:

x̄ =
1

n

n∑
i=1

xi

=
1

5
(1 + 2 + 4 + 3 + 5)

=
1

5
× 15

= 3

ȳ =
1

n

n∑
i=1

yi

=
1

5
(2 + 3 + 5 + 4 + 6)

=
1

5
× 20

= 4

63

Chapter 8. Proof of Concept

Utilizing the binary operations defined in section 8.1.2, as well as some auxiliary
functions (e.g. summing a list of binaries), calculating the means produces the
expected outputs for both xi and yi as binary numbers (the decimal values are
printed alongside them for better understanding).

Figure 16: Result of the binary means calculation

The same applies when calculating the means using garbled circuits.

Figure 17: Result of the garbled circuit means calculation

64

Chapter 8. Proof of Concept

The next training step covers the calculation of the slope (β1), using the means we
have determined previously.

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

=

∑5
i=1(xi − x̄)(yi − ȳ)∑5

i=1(xi − x̄)2

=
(1− 3)(2− 4) + (2− 3)(3− 4) + (4− 3)(5− 4) + (3− 3)(4− 4) + (5− 3)(6− 4)

(1− 3)2 + (2− 3)2 + (4− 3)2 + (3− 3)2 + (5− 3)2

=
(−2)(−2) + (−1)(−1) + (1)(1) + (0)(0) + (2)(2)

(−2)2 + (−1)2 + (1)2 + (0)2 + (2)2

=
4 + 1 + 1 + 0 + 4

4 + 1 + 1 + 0 + 4

=
10

10

= 1

Thus, the slope of the linear regression line is β1 = 1.

Figure 18: Result of the binary slope calculation

Note that the bit length of the slope increases to 16 due to the sign extension that
occurs during the multiplication process of two (signed) binary numbers. This is
done to avoid loss of information that would lead to wrong results.

65

Chapter 8. Proof of Concept

Figure 19: Result of the garbled circuit slope calculation

We can now combine both means x̄ = 3 and ȳ = 4, and the slope β1 = 1 and execute
the next step to acquire the intercept β0 of the linear regression function.

β0 = ȳ − β1 · x̄

= 4− 1 · 3

= 4− 3

= 1

The intercept of the linear regression line is β0 = 1, the same as the slope.

Figure 20: Result of the binary intercept calculation

Prediction

Now that we have calculated both coefficients, we can apply the linear regression
equation on the test set’s independent variable to make predictions - y will be
calculated for each value of xi.

66

Chapter 8. Proof of Concept

Figure 21: Result of the garbled circuit intercept calculation

β0 = 1, β1 = 1, xi = (1, 2, 4, 3, 5)

y = β0 + β1 · x

y = 1 + 1 · 1 = 1 + 1 = 2

y = 1 + 1 · 2 = 1 + 2 = 3

y = 1 + 1 · 4 = 1 + 4 = 5

y = 1 + 1 · 3 = 1 + 3 = 4

y = 1 + 1 · 5 = 1 + 5 = 6

The predicted values yp corresponding to xi are: yp = (2, 3, 5, 4, 6)

67

Chapter 8. Proof of Concept

Figure 22: Result of applying the binary regression equation

Figure 23: Result of applying the garbled circuit regression equation

8.2 Evaluation

This proof of concept intended to demonstrate an example of how garbled circuits
could be utilized for secure multi-party machine learning in the cloud. While some
aspects were shown to be feasible, others need to be addressed should this implemen-
tation be elevated to a viable solution for real-world machine learning scenarios.

68

Chapter 8. Proof of Concept

8.2.1 Performance, Complexity and Implementation Effort

One of the major concerns when implementing garbled circuits to securely compute
a given function is the increased computational demand compared to executing this
function publicly. Unfortunately, this is also prevalent in our proof of concept.

Compared to training the simple linear regression model using binary operations, the
same training process is significantly slower when carried out with garbled circuits.

Run Binary Circuits Garbled Circuits
1 0.0016210079193115234 0.3389451503753662
2 0.0010771751403808594 0.3446238040924072
3 0.0011820793151855469 0.33850693702697754
4 0.0005500316619873047 0.379697322845459
5 0.0006239414215087891 0.3488502502441406

Table 5: Execution duration of Linear Regression training in seconds, using binary and
garbled circuits

Even though the execution with garbled circuits takes less than a second, the increase
in duration is quite large since it takes approximately 200 times as long as the
execution with normal binary circuits. Considering that only a small training set
was used, this number is likely to increase exponentially for larger sets or bigger
numbers, as well as floating point numbers.

Increasing execution times are also an indicator of higher memory consumption.
The larger the circuits get, the more objects have to be created and consequently,
more memory is required.

Despite linear regression being one of the simplest machine learning models, combin-
ing it with garbled circuits took a comparatively high implementation effort because
all necessary circuits have to be constructed and correctly connected to each other
on the fly. Depending on the training data, the amount of necessary circuits as well
as the combinations with each other may differ significantly.

8.2.2 Security

As already mentioned in chapter 4.5, as the garbled circuit protocol offers a strong
privacy guarantee and thus is an inherently secure protocol, the proof of concept
can be considered secure on this level as well. Hence, any potential vulnerabilities
would stem from the implementation itself.

69

Chapter 8. Proof of Concept

Two of the templates created for this implementation required the disclosure of in-
termediate values, more precisely the MSBs of some numbers as well as one instance
where an entire number needed to be revealed. While the MSB’s contain informa-
tion about the sign of the given number, there is no way for an adversary to derive
the number itself from a single bit, especially without knowing anything about the
number’s bit length. When we look at the division template that discloses even
more information, we find that the remainder is only revealed in full when it equals
0. An adversary would not be able to make much sense of this information without
also knowing the context in which the number is used.

While the above can certainly be seen as a deviation from the original protocol
because the implementation reveals intermediate outputs, they are only utilized by
the system in order to determine its next steps. Due to the fact that none of these
intermediate values are ever made available to the evaluator, we could argue that the
proof of concept remains secure at the protocol level and that it does not introduce
any additional attack vectors on implementation level.

8.2.3 Advantages and Drawbacks

The training sets used for linear regression models may vary greatly, which is why
the implementation features circuit templates for all necessary arithmetic opera-
tions. This structure gives the system the adaptability to not only work with binary
numbers of arbitrary length but also with sets of varying sizes, thus enhancing its
scalability.

Although we are not reusing any of the circuits created during model training as a
whole, the templates offer reusable components like gates or wires. Not creating fully
reusable circuits surely increases the overall complexity of the system but in return
allows for the intermediate evaluation of subcircuits within the training process,
possibly leading to lower computational demands. Due to their modularity, more
generic patterns could be generated from these templates, which could then be used
for different machine learning algorithms like logistic regression or binary trees.

Due to incorporating a data preparation layer as well, users only need to input
their training data - everything else is handled by the system itself, including circuit
creation, making it easy to use even for users who are not familiar with the concept
of garbled circuits. Not only does the proof of concept show the feasibility of model
training, it is able to handle predictions as well.

70

Chapter 8. Proof of Concept

Despite demonstrating that it is possible to perform linear regression model training,
the proof of concept still comes with some drawbacks we have to address. Currently,
it is not possible to perform any training (or calculations, for that matter) on floating
point numbers because the implementation would have gone beyond the scope of this
thesis due to a significant increase in overall complexity. All inputs, intermediate
and final results must be integers, otherwise no training can be performed. Due to
this restriction the proof of concept utilizes a carefully fabricated data set in order
to perform a single training iteration.

So far the system is only capable of the simplest form of garbling and includes none
of the crucial practical optimizations necessary to speed up the evaluation of more
complex circuits. At the moment there is no possibility for a second party to add
their inputs and execute the training on the combined data, which is in contrast
to one of the points the implementation intended to prove. The cloud currently
serves as the only evaluator and while this obviously limits the system, we can still
demonstrate that it guarantees privacy and security when training a linear regression
model.

8.2.4 Future Work

Considering the proof of concept, there are a number of improvements that could be
made to the current implementation, the most crucial being the upgrade to floating
point arithmetic. Due to the present limitation to integers it cannot be used in
real-world training scenarios but rather has to be supplied with fabricated test data
to avoid any occurrence of floating point numbers. Enabling a second party (or
more parties) to add their own training data and consequently take on the role of
the Evaluator is the next logical step in the given context. This would allow for
joint model training and thus make the system a more attractive option for secure
machine learning.

To allow more use cases than just training and making predictions, future work
could include the implementation of the model optimization process because there
are numerous applications in which optimization is crucial, especially when training
is performed with very large datasets.

Optimization is often done by using Gradient Descent, an iterative algorithm with
which a local minimum of a given function can be determined. When used to opti-
mise a linear regression model, the algorithm will iteratively update its coefficients
(the slope β1 and the intercept β0) until the best-fit line is found.

71

Chapter 8. Proof of Concept

As previously mentioned in chapter 7.1, this is done by differentiating and calculating
the MSE for both β0 and β1 to acquire their respective partial derivatives.

MSE =
1

n

n∑
i=1

(ŷi − yi)
2

Differentiating the MSE with respect to β0:

MSE ′
β0

=
∂MSE(β0, β1)

∂β0

=
∂

∂β0

[
1

n

(
n∑

i=1

(ŷi − yi)
2

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)

(
∂

∂β0

(ŷi − yi)

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)

(
∂

∂β0

(β0 + β1xi − yi)

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)(1 + 0− 0)

]

=
1

n

[
n∑

i=1

(ŷi − yi)(2)

]

=
2

n

n∑
i=1

(ŷi − yi)

72

Chapter 8. Proof of Concept

Differentiating the MSE with respect to β1:

MSE ′
β1

=
∂MSE(β0, β1)

∂β1

=
∂

∂β1

[
1

n

(
n∑

i=1

(ŷi − yi)
2

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)

(
∂

∂β1

(ŷi − yi)

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)

(
∂

∂β1

(β0 + β1xi − yi)

)]

=
1

n

[
n∑

i=1

2(ŷi − yi)(0 + xi − 0)

]

=
1

n

[
n∑

i=1

(ŷi − yi)(2xi)

]

=
2

n

n∑
i=1

(ŷi − yi) · xi

The updated coefficients serve as inputs for the next iteration of the gradient descent
algorithm. As soon as the minimum squared error is achieved, the values will be
used to make an updated prediction using the linear regression function.
Both of these functions could be broken down similarly to training and prediction,
like we have done in chapter 7.3.

Apart from enhancing its functionality, future work on this project could also include
practical optimizations to boost its speed or lower the overall computational cost of
circuit construction. There are a few different approaches to circuit optimizations,
ranging from computing certain gates without any cost (e.g. FreeXOR) to reducing
the number of ciphertexts each gate contains (and thus reducing the size of all
garbled tables within the circuit; like Garbled Row Reduction). Furthermore, the
templates created for the individual arithmetic operations can certainly be improved
by reducing their complexity and optimizing their overall resource usage.

73

Chapter 9. Outlook on Garbled Circuits in Machine Learning

9 Outlook on Garbled Circuits in Machine Learning

The primary aim of this thesis was to determine whether garbled circuits are a
suitable tool for secure training of a machine learning model and develop a proof of
concept that demonstrates an exemplary training process. While possible, only the
simplest form of both garbling and model have been implemented.

In order to make garbled circuits a more attractive and versatile option for secure
machine learning, more of the known optimizations, like point-permute or free XOR
should be implemented.

Despite simple linear regression being a rather simple equation with only a few
parameters and calculation steps, the number of circuits that need to be garbled
and evaluated is already very high. Therefore, augmenting the training data or
calculating binaries with an increasing number of bits would most likely significantly
slow down the training process. Within a cloud environment it might not seem like
an issue at first glance but in order to prevent this deceleration one would need to
increase computation power, which in turn would increase the usage cost.

In general, the outlook on garbled circuits in machine learning is promising even
though there still are some challenges that need to be overcome.

74

References

References

[1] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The round complex-
ity of secure protocols”. In: Symposium on the Theory of Computing. 1990.
url: https://api.semanticscholar.org/CorpusID:1578121 (visited on
09/07/2024).

[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. “Foundations of gar-
bled circuits”. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA: Associa-
tion for Computing Machinery, 2012, pp. 784–796. isbn: 9781450316514. doi:
https://doi.org/10.1145/2382196.2382279.

[3] Vitalik Buterin. Garbled Circuits: Basic Scheme and Applications. 2022. url:
https://hackernoon.com/garbled-circuits-basic-scheme-and-applica
tions (visited on 01/16/2024).

[4] ClickSSL. What is Symmetric Encryption? Symmetric-Key Algorithms. 2024.
url: https://www.clickssl.net/blog/what-is-symmetric-encryption
(visited on 09/06/2024).

[5] Benjamin D. Esham. A table of the substitutions achieved with the ROT-13
cipher with the Latin alphabet, and an example. 2007. url: https://commons.
wikimedia.org/w/index.php?title=File:ROT13%5C_table%5C_with%5C_
example.svg%5C&oldid=891208936 (visited on 09/06/2024).

[6] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A Pragmatic Introduc-
tion to Secure Multi-Party Computation. Now Publishers, 2018. isbn: 978-1-
680-83508-3.

[7] GeeksforGeeks. Asymmetric Key Cryptography. 2024. url: https://www.gee
ksforgeeks.org/asymmetric-key-cryptography/ (visited on 09/06/2024).

[8] Google. Benefits of Cloud Computing. url: https://cloud.google.com/le
arn/advantages-of-cloud-computing#section-3 (visited on 01/16/2024).

[9] Matan Hamilis. Garbled Circuits: A Primer. 2021. url: https://hackmd.
io/@matan/garbled_circuits#Garbled-Circuits-A-Primer (visited on
01/16/2024).

[10] Baivab Kumar Jena. AES Encryption: Secure Data with Advanced Encryption
Standard. 2024. url: https://www.simplilearn.com/tutorials/cryptogr
aphy-tutorial/aes-encryption (visited on 09/06/2024).

[11] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. “FleXOR: Flexible
Garbling for XOR Gates That Beats Free-XOR”. In: Advances in Cryptology
- CRYPTO 2014. Berlin, Heidelberg: Springer, 2014, pp. 440–457. isbn: 978-
3-662-44381-1. doi: https://doi.org/10.1007/978-3-662-44381-1_25.

75

https://api.semanticscholar.org/CorpusID:1578121
https://doi.org/https://doi.org/10.1145/2382196.2382279
https://hackernoon.com/garbled-circuits-basic-scheme-and-applications
https://hackernoon.com/garbled-circuits-basic-scheme-and-applications
https://www.clickssl.net/blog/what-is-symmetric-encryption
https://commons.wikimedia.org/w/index.php?title=File:ROT13%5C_table%5C_with%5C_example.svg%5C&oldid=891208936
https://commons.wikimedia.org/w/index.php?title=File:ROT13%5C_table%5C_with%5C_example.svg%5C&oldid=891208936
https://commons.wikimedia.org/w/index.php?title=File:ROT13%5C_table%5C_with%5C_example.svg%5C&oldid=891208936
https://www.geeksforgeeks.org/asymmetric-key-cryptography/
https://www.geeksforgeeks.org/asymmetric-key-cryptography/
https://cloud.google.com/learn/advantages-of-cloud-computing#section-3
https://cloud.google.com/learn/advantages-of-cloud-computing#section-3
https://hackmd.io/@matan/garbled_circuits#Garbled-Circuits-A-Primer
https://hackmd.io/@matan/garbled_circuits#Garbled-Circuits-A-Primer
https://www.simplilearn.com/tutorials/cryptography-tutorial/aes-encryption
https://www.simplilearn.com/tutorials/cryptography-tutorial/aes-encryption
https://doi.org/https://doi.org/10.1007/978-3-662-44381-1_25

References

[12] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free
XOR Gates and Applications”. In: Automata, Languages and Programming.
Berlin, Heidelberg: Springer, 2008, pp. 486–498. isbn: 978-3-540-70583-3. doi:
https://doi.org/10.1007/978-3-540-70583-3_40.

[13] Theo Lynn et al. Measuring the Business Value of Cloud Computing. Sin-
gapore: Springer Nature, 2020, p. 22. isbn: 978-3-030-43198-3. doi: https:
//doi.org/10.1007/978-3-030-43198-3_2.

[14] Olivier Markowitch, Liran Lerman, and Gianluca Bontempi. “Side channel at-
tack: An approach based on machine learning”. In: Constructive Side-Channel
Analysis and Secure Design, COSADE. Feb. 2011.

[15] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. Gaithers-
burg: Computer Security Division, Information Technology Laboratory, Na-
tional Institute of Standards and Technology, 2011. doi: https://doi.org/
10.6028/NIST.SP.800-145.

[16] Moni Naor, Benny Pinkas, and Reuben Sumner. “Privacy preserving auctions
and mechanism design”. In: Proceedings of the 1st ACM Conference on Elec-
tronic Commerce. EC ’99. Denver, Colorado, USA: Association for Computing
Machinery, 1999, pp. 129–139. isbn: 1581131763. doi: https://doi.org/10.
1145/336992.337028.

[17] Alessandro Nassiri. Enigma (crittografia) - Museo scienza e tecnologia Milano.
2012. url: https://commons.wikimedia.org/wiki/File:Enigma%5C_
(crittografia)%5C_-%5C_Museo%5C_scienza%5C_e%5C_tecnologia%5C_
Milano.jpg (visited on 09/06/2024).

[18] Ignacio Navarro. Gabes. 2018. url: https://github.com/nachonavarro/
gabes (visited on 09/16/2024).

[19] Ignacio Navarro. “On Garbled Circuits”. Imperial College London, 2018, pp. 4–
11. url: https://www.imperial.ac.uk/media/imperial-college/facu
lty-of-engineering/computing/public/1718-ug-projects/Ignacio-
Navarro-On-Garbled-Circuits.pdf (visited on 09/06/2024).

[20] Umang H Patel. “Secure Multi-Party Computation (SMPC) For Privacy-
Preserving Data Analysis”. In: International Journal of Creative Research
Thoughts (IJCRT) 12.4 (2024). issn: 2320-2882. url: https://www.ijcrt.
org/papers/IJCRT2404250.pdf (visited on 09/07/2024).

[21] Benny Pinkas et al. “Secure Two-Party Computation Is Practical”. In: Ad-
vances in Cryptology - ASIACRYPT 2009. Berlin, Heidelberg: Springer, 2009,
pp. 250–267. isbn: 978-3-642-10366-7. doi: https://doi.org/10.1007/978-
3-642-10366-7_15.

[22] Jennifer Ritz. “Post-Quantum Kryptographie - Evaluation Quantencomputer-
resistenter Public-Key-Verfahren basierend auf der Implementierung auf klas-
sischen Computern”. Master’s Thesis. Hochschule Wismar, 2020, pp. 26–27.

[23] Kelley Robinson. What is Public Key Cryptography? 2018. url: https://
www.twilio.com/en-us/blog/what-is-public-key-cryptography (visited
on 09/06/2024).

76

https://doi.org/https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/https://doi.org/10.1007/978-3-030-43198-3_2
https://doi.org/https://doi.org/10.1007/978-3-030-43198-3_2
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/https://doi.org/10.1145/336992.337028
https://doi.org/https://doi.org/10.1145/336992.337028
https://commons.wikimedia.org/wiki/File:Enigma%5C_(crittografia)%5C_-%5C_Museo%5C_scienza%5C_e%5C_tecnologia%5C_Milano.jpg
https://commons.wikimedia.org/wiki/File:Enigma%5C_(crittografia)%5C_-%5C_Museo%5C_scienza%5C_e%5C_tecnologia%5C_Milano.jpg
https://commons.wikimedia.org/wiki/File:Enigma%5C_(crittografia)%5C_-%5C_Museo%5C_scienza%5C_e%5C_tecnologia%5C_Milano.jpg
https://github.com/nachonavarro/gabes
https://github.com/nachonavarro/gabes
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-ug-projects/Ignacio-Navarro-On-Garbled-Circuits.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-ug-projects/Ignacio-Navarro-On-Garbled-Circuits.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-ug-projects/Ignacio-Navarro-On-Garbled-Circuits.pdf
https://www.ijcrt.org/papers/IJCRT2404250.pdf
https://www.ijcrt.org/papers/IJCRT2404250.pdf
https://doi.org/https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/https://doi.org/10.1007/978-3-642-10366-7_15
https://www.twilio.com/en-us/blog/what-is-public-key-cryptography
https://www.twilio.com/en-us/blog/what-is-public-key-cryptography

References

[24] Ayush Saha. Understanding the Vigenère Cipher. 2023. url: https://dev.
to/cognivibes/understanding-the-vigenere-cipher-16g5 (visited on
09/06/2024).

[25] Meruja Selvamanikkam. Digital Signature Generation. 2018. url: https://me
ruja.medium.com/digital-signature-generation-75cc63b7e1b4 (visited
on 09/06/2024).

[26] Jagjit Singh. Known-plaintext attacks, explained. 2023. url: https://coint
elegraph.com/explained/known-plaintext-attacks-explained (visited
on 09/16/2024).

[27] Dharmendra Thirunavukkarasu. Cracking the Code: A Deep Dive into the
Scytale Cipher and Its Modern-Day Counterpart, Homoglyph Attacks. 2023.
url: https://www.linkedin.com/pulse/serpentine-connections-how-
griekenland-scytale-modern-dharmendra/ (visited on 09/06/2024).

[28] Linus Töbke. “Quantenresistente vertrauliche Cloud-Nutzung”. Master’s The-
sis. Hochschule Wismar, 2022, p. 40.

[29] Yongge Wang, Qutaibah M. Malluhi, and Khaled MD Khan. “Garbled compu-
tation in cloud”. In: Future Generation Computer Systems 62 (2016), pp. 54–
65. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2015.11.
004.

[30] Andrew C. Yao. “Protocols for secure computations”. In: 23rd Annual Sym-
posium on Foundations of Computer Science (sfcs 1982). 1982, pp. 160–164.
doi: 10.1109/SFCS.1982.38.

[31] Samee Zahur, Mike Rosulek, and David Evans. “Two Halves Make a Whole”.
In: Advances in Cryptology - EUROCRYPT 2015. Berlin, Heidelberg: Springer,
2015, pp. 220–250. isbn: 978-3-662-46803-6. doi: https://doi.org/10.1007/
978-3-662-46803-6_8.

77

https://dev.to/cognivibes/understanding-the-vigenere-cipher-16g5
https://dev.to/cognivibes/understanding-the-vigenere-cipher-16g5
https://meruja.medium.com/digital-signature-generation-75cc63b7e1b4
https://meruja.medium.com/digital-signature-generation-75cc63b7e1b4
https://cointelegraph.com/explained/known-plaintext-attacks-explained
https://cointelegraph.com/explained/known-plaintext-attacks-explained
https://www.linkedin.com/pulse/serpentine-connections-how-griekenland-scytale-modern-dharmendra/
https://www.linkedin.com/pulse/serpentine-connections-how-griekenland-scytale-modern-dharmendra/
https://doi.org/https://doi.org/10.1016/j.future.2015.11.004
https://doi.org/https://doi.org/10.1016/j.future.2015.11.004
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/https://doi.org/10.1007/978-3-662-46803-6_8

List of Figures

List of Figures

1 The scytale as a transposition cipher [27] 7
2 The ROT-13 cipher, a prominent example of the Caesar cipher [5] . . 8
3 A Vigenère Cipher Table and how to use it [24] 9
4 A Military Model Enigma I, in use from 1930 [17] 9
5 Symmetric Encryption Scheme [4] . 11
6 Simplified overview including all steps of the AES algorithm [10] . . . 12
7 A simple illustration of Public Key Cryptography [23] 13
8 The process of Digital Signing and Verification [25] 15

9 An overview of a garbling scheme’s components [2] 27

10 An overview of the different cloud services [13] 36

11 AND, OR & XOR ANSI symbols . 42
12 Half-adder schematic . 43
13 Full-adder schematic . 44
14 A 4-bit parallel adder-subtractor with a mode input control line . . . 45
15 The schematic of a 4-bit parallel multiplier 46

16 Result of the binary means calculation 64
17 Result of the garbled circuit means calculation 64
18 Result of the binary slope calculation 65
19 Result of the garbled circuit slope calculation 66
20 Result of the binary intercept calculation 66
21 Result of the garbled circuit intercept calculation 67
22 Result of applying the binary regression equation 68
23 Result of applying the garbled circuit regression equation 68

78

List of Tables

List of Tables

1 Optimizations of garbled circuits. Size is number of ’ciphertexts’
(multiples of k bits). 28

2 AND, OR & XOR truth tables . 42
3 Half-adder truth table . 43
4 Full-adder truth table . 44

5 Execution duration of Linear Regression training in seconds, using
binary and garbled circuits . 69

79

List of Listings

List of Listings

1 Preparing the input data . 50
2 Half-adder function . 51
3 Full-adder function . 51
4 n-bit adder-subtractor . 52
5 n-bit Multiplier . 53
6 n-bit Division . 54
7 Circuit object . 55
8 Gate object . 55
9 Classical garbling function . 56
10 Evaluation function . 56
11 Decryption method for output labels 56
12 Wire object . 57
13 Label object . 57
14 The general template structure, applied to the half-adder 58
15 The full-adder template making use of the half-adder template 59
16 Creating the required circuits for the n-bit adder-subtractor template

and connecting them . 60
17 Evaluating an adder-subtractor circuit 60
18 Preparing the inputs of the n-bit multiplier template 61
19 Performing sign extension by creating new wires and labels 62
20 Shifting the partial products by assigning new wire identifiers 62

80

Attachments

Attachments

/mtkd_files...root folder

code ... the proof of concept source code

binary_calc................classes for model training with binary circuits

garbled_circuits..................classes for garbled circuit construction

linear_regression the templates for secure model training

templates.......................template classes for secure model training

kd_thesis.pdf..........................pdf file containing this master’s thesis

Due to the size all source code mentioned but not added to this document is contained in
the accompanying folder. The secure training templates mentioned throughout this thesis
can be found in the templates subfolder.

81

Selbstständigkeitserklärung

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die
anderen Quellen im Wortlaut oder dem Sinn nach entnommen wurden, sind durch
Angaben der Herkunft kenntlich gemacht. Dies gilt auch für Zeichnungen, Skizzen,
bildliche Darstellungen sowie für Quellen aus dem Internet.

Ich erkläre ferner, dass ich die vorliegende Arbeit in keinem anderen Prüfungsver-
fahren als Prüfungsarbeit eingereicht habe oder einreichen werde.

Die eingereichte schriftliche Arbeit entspricht der elektronischen Fassung. Ich stimme
zu, dass eine elektronische Kopie gefertigt und gespeichert werden darf, um eine
Überprüfung mittels Anti-Plagiatssoftware zu ermöglichen.

Ort, Datum Unterschrift

82

	Title Page
	Kurzfassung/Abstract
	Table of Contents
	Motivation
	Cryptography
	The Historical Evolution of Cryptography
	Quantum & Post-Quantum Cryptography
	Symmetric Cryptography
	Asymmetric Cryptography
	Hash Functions & Digital Signatures
	Cryptographic Protocols
	Cryptographic Attacks

	Secure Multi-Party Computation
	Foundations & Applications
	Fundamental Protocols
	Security & Trust
	Limitations

	Garbled Circuits
	Yao's Garbled Circuits
	The Answer to the Millionaires' Problem
	Oblivious Transfer
	Boolean Circuits
	Garbling and Evaluation

	Garbling Scheme
	Security Properties
	Optimizations
	Summary

	Machine Learning
	Introduction
	Paradigms
	Suitable Algorithms

	Cloud Computing
	What is Cloud Computing?
	Architecture and Deployment Models
	Service Models
	Trust and Confidentiality

	Privacy-Preserving Machine Learning with Garbled Circuits
	The Linear Regression Model
	Linear Regression in Machine Learning
	Breaking down the model
	Constructing the Binary Circuits
	Addition
	Subtraction
	Multiplication
	Division

	Research & Development Design
	Implementation Plan
	Proposed Workflow
	Scope & Limitations

	Proof of Concept
	Implementation
	Data Preparation Layer
	Binary Arithmetic Operations
	Garbled Circuits
	Templates for Secure Linear Regression
	Training and Prediction

	Evaluation
	Performance, Complexity and Implementation Effort
	Security
	Advantages and Drawbacks
	Future Work

	Outlook on Garbled Circuits in Machine Learning
	References
	List of Figures
	List of Tables
	List of Listings
	Attachments
	Selbstständigkeitserklärung

