
Hochschule Wismar
University of Applied Sciences
Technology, Business and Design
Fakultät für Ingenieurwissenschaften

Master-Thesis

Homomorphic Post-Quantum Cryptography - Evaluation of Module
Learning with Error in Homomorphic Cryptography

Date: October 29, 2024

Author: Pascal Stehling
E-Mail: pascal@stehl.ing

Abstract

This thesis investigates the conversion of Ring-LWE (R-LWE)-based homomorphic
encryption schemes to Module-LWE (M-LWE) and analyses the resulting perfor-
mance differences. The advantage of M-LWE is that a fixed-sized polynomial de-
gree can be utilized and the security of the system can be changed by increas-
ing the vector/matrix dimension. This is the same concept that is utilized in the
CRYSTALS-Kyber encryption scheme. The feasibility of transferring R-LWE to M-
LWE is demonstrated based on the BFV homomorphic encryption scheme, showing
that a functioning homomorphic encryption can be maintained. While the addition
is straightforward, the multiplication necessitates the generation of multiple relin-
earization (evaluation) keys. It is demonstrated that the practical performance is
only slightly inferior to that of R-LWE, with the advantage of smaller ciphertext
sizes. However, there is still considerable scope for improvement in theoretical as-
pects, such as the study of security benefits and in practice, in enhancing the general
performance.

2

Contents

Contents

1 Introduction 4

2 Mathematical Background 7
2.1 Preliminaries . 7
2.2 Lattice . 8
2.3 Integer & Polynomial Rings with modulus 9
2.4 Polynomial Ring arithmetic using Vectors & Matrices 13
2.5 Multidimensional Rings . 16

3 Learning with Errors 17
3.1 The Learning with Errors Problem 17
3.2 LWE based encryption scheme . 18
3.3 Transforming Plain-LWE to R-LWE and M-LWE 22
3.4 Criteria for comparing LWE-based encryption schemes 24

4 Homomorphic Encryption 26
4.1 Introduction to Homomorphic Encryption 26
4.2 Creating an Somewhat Homomorphic Encryption scheme 28
4.3 Generalizing from R-LWE to M-LWE 31
4.4 Criteria for comparing LWE-based homomorphic encryption schemes 37

5 Comparison of the SWHE scheme for Plain-, R- and M-LWE 39
5.1 Size cost comparison . 40
5.2 Time cost comparison . 44
5.3 Comparison of the additive and multiplicative depth 49

6 Conclusion 56

Bibliography 60

List of Figures 63

List of Tables 63

List of Algorithms 64

Appendix A Example Calculations 65
A.1 Example Multidimensional Ring Calculation 65
A.2 Example encryption with Plain-LWE 66
A.3 Example encryption with R-LWE . 68
A.4 Example encryption with M-LWE . 70

3

Chapter 1. Introduction

1 Introduction

In the early months of 1978, one of the most significant cryptographic systems, the
RSA system [30], was published. With the advent of the Internet in the 1990s and
the subsequent need for secure data transfer, it became one of the most widely used
encryption schemes to date. In the subsequent period of slightly more than half a
year after publishing the RSA algorithm, two of its authors published a new con-
cept based on RSA which they called privacy homomorphism [29]. This concept
would later be known as Homomorphic Encryption (HE). It’s an encryption sys-
tem whereby operations can be executed directly on encrypted data, eliminating
the necessity of first decrypting it, running the operations, and then encrypting it
again. Such a system would not only eliminate the necessity for decryption and
encryption at the processing stage, it would also ensure that the plain text is not
readable by the party undertaking this processing. However, at the system’s incep-
tion, only one operation was feasible: multiplication. To develop a system capable
of general computing, the addition operation was necessary as a second operation.
With these two operations, all other operations can be constructed at the bit level,
by creating a logical NAND gate. Unfortunately, the creation of a homomorphic
encryption scheme with unlimited additions and multiplications, also known as full
homomorphic encryption (FHE), proved to be a formidable challenge.
In 1994, Peter Shor published his algorithm [31], which describes how a quantum
computer could factorize numbers in polynomial time. This is in contrast to classical
computers, for which this problem is categorized as a hard problem, which means ex-
ponential time is necessary to solve the problem. Given that the RSA cryptosystem
is based on the assumption that this particular mathematical problem is difficult
to compute, it is theoretically possible to find the private key corresponding to any
given public key in a reasonable amount of time. This would effectively compromise
the security of the cryptosystem. Fortunately, no quantum computer capable of such
an operation was anywhere near availability at the time, so this problem remained
theoretical.
Approximately a decade later, in 2005, O. Regev devised a novel mathematical
framework, termed Learning with Error (LWE) [28], which enables the construction

4

Chapter 1. Introduction

of new cryptosystems. This framework is based on an error term within a linear
system of equations constructed on a lattice. The mathematical problem that he
exploits for security is the hardness of the shortest vector problem (SVP). Over time,
variants based on this problem were developed. Two such variants are Ring-LWE
(R-LWE), which employs polynomials in place of the vectors and matrices, and
Module-LWE (M-LWE), which combines R-LWE with (Plain-)LWE in a manner
that results in multidimensional polynomials, vectors and matrices of polynomials.
In 2009, Craig Gentry published the first full-homomorphic encryption scheme [13].
This development prompted renewed optimism regarding the advancement of FHE
schemes, as it became evident that the concept was indeed feasible. However, the
primary challenge that remained was the issue of performance. To enhance the
efficiency of this scheme, the initial version, which was based on the ideal lattice,
was adapted to the R-LWE scheme. Over time, significant advancements have been
made in the development of these FHE schemes, which are constructed on basis
of R-LWE [23]. However, the primary challenge persists, namely the performance,
which is frequently 1000s of times slower than operations on the plain text.
In recent years, there has been a resurgence of interest in quantum computers as
various companies compete to develop the first practical and useful quantum com-
puter [14] [16]. Consequently, the performance of these computers has been steadily
improving. If the promises made are accurate, it is possible that in 10 years, viable
quantum computers will be available on the market. These computers could run
Shor’s Algorithm and thereby breach the security of RSA (and other) cryptosys-
tems, potentially undermining the security of the internet as it currently stands. To
circumvent such potential issues, the US National Institute of Standards and Tech-
nology (NIST) initiated an open competition in 2016, wherein individuals could
submit novel cryptographic systems for analysis. Research teams from around the
globe would then endeavor to identify vulnerabilities in these systems. In 2022, the
NIST announced the first four winners [25], three of which were based on LWE. The
two most recommended systems, CRYSTALS-Kyber [4] and CRYSTALS-Dilithium
[9], are both based on M-LWE.

In light of these recent advancements in M-LWE-based encryption and the estab-
lished R-LWE-based homomorphic encryption schemes, the main question of this
thesis arises concerning the potential for integrating these two approaches: Is it
possible to port the R-LWE-based homomorphic encryption schemes to M-LWE and
does this results in an improvement in performance? The performance of an ho-
momorphic encryption scheme is not merely a function of its processing speed, it
is also determined by the reduction in memory usage or the increase in the depth

5

Chapter 1. Introduction

of operations that it is capable of performing. The depth of operations refers to
the number of consecutive operations that can be performed without a significant
increase in error, whereby the decryption produces erroneous results. Given that
M-LWE employs matrices of polynomials in place of scalar polynomials in R-LWE,
it is anticipated that the higher variance in error values will result in a greater depth
of operations, as they could cancel out a bit. Should the advantages outweigh the
disadvantages, this would facilitate new synergies between the current endeavour to
enhance the security of a post-quantum internet and the construction of efficient and
dependable homomorphic encryption algorithms. For instance, enhanced and high-
performing implementations or even hardware accelerators could be reused, thereby
enhancing the efficacy of homomorphic encryption while simultaneously reducing
the cost of development.

The thesis is divided into five principal sections. The first section of the thesis
provides an introduction to the mathematical background, wherein all necessary
mathematical operations will be explained in sufficient detail. Subsequently, the
LWE problems will be described in greater detail, and a basic LWE-based encryption
scheme will be constructed. The scheme is capable of functioning on Plain-, Ring-,
and Module-LWE. Following this, homomorphic encryption will be outlined, and
the LWE-based encryption scheme will be expanded to become homomorphic for
all three LWE types. These schemes will then be evaluated based on their memory
usage, processing performance, and calculation depth. Ultimately, the main question
will be addressed based on these findings.

6

Chapter 2. Mathematical Background

2 Mathematical Background

In order to comprehend the mathematical principles underlying the encryption al-
gorithms described in this thesis, it is first necessary to grasp a few fundamental
concepts. However, it is assumed that the reader has a basic familiarity with linear
algebra and polynomial calculus.

2.1 Preliminaries

The following notations are used throughout this thesis:

a ⇐Scalar: lowercase plain letter

a ⇐Vector: lowercase bold letter

A ⇐Matrix: uppercase bold letters

a(x) ⇐Polynomial: lowercase plain letter with the variable in brackets

R ⇐Ring: uppercase plain

x← R⇐choosing uniformly from all values in the ring: variable with leftarrow
to ring

x ← χR ⇐choosing values from the ring around 0 (eg Discrete Gaussian):
variable with leftarrow to an error distribution of the ring

+ ⇐Addition

· ⇐Multiplication between scalars and polynomials; dot product between vec-
tors and/or matrices

� ⇐Hadamard product (elementwise product)

⊗ ⇐Outer product (Tensor product)

7

Chapter 2. Mathematical Background

2.2 Lattice

All of the algorithms discussed in this thesis are based on lattices, which is why we
will briefly focus on them in more detail. In general, lattices behave like any other
vector space, but they only consist of discrete vectors. This means that the vectors
only contain integers and not real numbers as in a vector space.

Let B = {b1,b2, . . . ,bm} be a set of linearly independent vectors of Rn. The lattice
L generated by B is the set of integer linear combinations of B. B is called the basis
of the lattice L. That is,

L(B) = {a1b1 + . . .+ ambm|a1, . . . , am ∈ Z} ⊂ Rn

Using a matrix B, which contains the basis vectors as column vectors, we can gen-
erate L equivalently.

L(B) = {B · x|x ∈ Zm} ⊂ Rn

As in this definition, the integer n is the dimension of the lattice and m is its rank.
If m = n, then L is a full-rank lattice, which is the usual case in this thesis.

An example of a lattice based on a basis B and all the points that can be created
with it, also called the span, can be seen in the figure 1.

Figure 1: The span of an two-dimensional lattice with basis B = {b1, b2}.

8

Chapter 2. Mathematical Background

2.3 Integer & Polynomial Rings with modulus

This section is based on the Book Algebra by D. Plaumann[27].

Rings

A ring is a set R on which addition (+) and multiplication (·) can be performed and
results in a new Element, which is also part of the set R.

+ : R +R→ R (Addition) and · : R ·R→ R (Multiplication)

These calculations need to fulfill the following conditions:

for addition: R is an abelian group

• Associative property: (a+ b) + c = a+ (b+ c)|a, b, c ∈ R

• Commutative property: a+ b = b+ a|a, b ∈ R

• Additive identity: There exists and element 0 ∈ R so that a+0 = a|a ∈ R

• Additive inverse: For each a ∈ R there is an −a ∈ R so that a+(−a) = 0

for multiplication: R is an monoid

• Associative property: (a · b) · c = a · (b · c)|a, b, c ∈ R

• Multiplicative identity: There exists and element 1 ∈ R so that a · 1 =

1 · a = a|a ∈ R

Addition and Multiplication are distributive

• a · (b+ c) = a · b+ a · c|a, b, c ∈ R

• (a+ b) · c = a · c+ b · c|a, b, c ∈ R

A ring is also called commutative if the multiplication is also commutative. For
example, the ring over all integers Z is a commutative ring.

9

Chapter 2. Mathematical Background

Modular arithmetic on Rings

Congruence arithmetic, or modular arithmetic, is the term used to describe arith-
metic with remainders when dividing integers. In everyday life, this is mainly en-
countered in connection with clocks. After 60 minutes, the minute hand returns to
the same position as before.

More generally, this can be described as a ≡ b mod q|a, b ∈ Z, q ∈ N, where q is the
module by which a and b are divided until the remainder of both is less than q. If
a and b are then equal, they are congruent. Or in a more mathematical expression:
If there is a k, such as a− b = k · q, then a and b are congruent.

An congruence relation with module q on the set Z, has the following properties:
k, q ∈ N and a, a′, b, b′, c ∈ Z

1. a ≡ a mod q (Reflexivity)

2. a ≡ b mod q if b ≡ a mod q (Symmetry)

3. If a ≡ b mod q and b ≡ c mod q then a ≡ c mod q (Transitivity)

4. If a ≡ a′ mod q and b ≡ b′ mod q then a+ b ≡ a′ + b′ mod q

5. If a ≡ a′ mod q and b ≡ b′ mod q then a · b ≡ a′ · b′ mod q

6. If c and q are coprime and c · a ≡ c · b mod q then a ≡ b mod q

7. If a ≡ b mod k · q then a ≡ b mod q

The congruence class is the set of all numbers for an integer a ∈ Z modulus q that
produce the same remainder. It is defined as

[a]q = {b ∈ Z|a ≡ b mod q}

It follows that two numbers are congruent if both congruence classes are equal:

a ≡ b mod q ⇔ [a]q = [b]q

With this we can create a set of all congruence classes modulo q:

Zq = Z/q = Z mod q = {[a]q|a = 0, 1, · · · , q − 1}

.

10

Chapter 2. Mathematical Background

For example, Z3 = {[0]3, [1]3, [2]3}. With addition and multiplication it is possible
to create a commutative ring from Zq.

[a]q + [b]q = [a+ b]q (addition) and [a]q · [b]q = [a · b]q (multiplication)

This allows to create finite rings Zq for every natural number q with q elements in
each ring and to perform calculations inside these rings. For example, an ring with
n = 60 can be created, which represents the minutes in every hour. If the minute
hand shows now 48 and we want to know where it is after 3 times 13 minutes, we
can calculate it like:

[48]60 + [3]60 · [13]60 = [48 + 3 · 13]60 = [87]60 = [27]60

Polynomial Rings

A polynomial with coefficients in a ring R is expressed as

f(x) = a0 + a1x+ · · ·+ an−1x
d−1 + adx

d|a0, · · · , ad ∈ R

The variable d defines the degree deg(f(x)) of the polynomial, which is the largest
exponent in a polynomial.
Such polynomials can be added and multiplied like any other polynomial. Such
a polynomial ring with one variable x and its coefficients in R is written as R[x].
This is a generalization of the rings we had before, because R is a subset of R[x]

(R ⊂ R[x]), since R is a polynomial with deg(0): R = R[x] := a · x0 = a.
Such a polynomial ring can also be defined over a finite ring, so that each coefficient
is part of that finite ring. This is written as Rq = Zq[x]. The coefficients follow
the same rules for addition and multiplication as described above. The following
example takes place in the ring R5 = Z5[x] and f, g ∈ R5 with f(x) = 1 + 2x+ 3x2

and g(x) = 4 + 2x:

11

Chapter 2. Mathematical Background

f(x) · 4 = (1 + 2x+ 3x2) · 4

= [4]5 + [8]5x+ [12]5x
2

= 4 + 3x+ 2x2

f(x) + g(x) = (1 + 2x+ 3x2) + (4 + 2x)

= [5]5 + [4]5x+ [3]5x
2

= 4x+ 3x2

f(x) · g(x) = (1 + 2x+ 3x2) · (4 + 2x)

= [4]5 + [2]5x+ [8]5x+ [4]5x
2 + [12]5x

2 + [6]5x
3

= [4]5 + [10]5x+ [16]5x
2 + [6]5x

3

= 4 + 0x+ 1x2 + 1x3

As with any polynomial multiplication, the degree can increase as you multiply
two polynomials, leading to increasingly larger polynomials with each multipli-
cation. Since the modulo operation creates a finite ring, we can also create a
modulo operation that creates a finite ring over a polynomial where the degree
stays the same or is less than some upper bound. For this we have a ring R and
f(x), g(x), q(x), r(x) ∈ R[x], g 6= 0, where f(x) is a polynomial, g(x) is the modulus,
and r(x) is the remainder:

f(x) = g(x) · q(x) + r(x) and deg(r(x)) < deg(g(x)).

After this calculation, r(x) will be the remainder of f(x) with a degree smaller
than that of g(x), which will be used for further calculations. With this, we can
now define polynomial rings that have a module to generate finite coefficients and
a polynomial function to generate finite degree. This is written as

Rq = Zq[x]/g(x)

In this thesis the modulus function g(x) will be an polynomial with shape xd + 1.
In practice it should be an cyclotomic polynomial, where d needs to be a power
of two (2, 4, 8, · · ·). These polynomials are used as they simplify the calculation
of the remainder, because the polynomial division can be simplified to addition
and subtraction. When doing a polynomial division, one can subtract d from the

12

Chapter 2. Mathematical Background

exponent and invert the coefficient if the exponent is greater than or equal to d.
This must be repeated until the largest exponent is less than d. For example,
f ∈ Z5[x]/(x

3 + 1)

f(x) = 3 + 4x2 + 2x3 + x5 + 3x6 mod (x3 + 1)

= 3 + 4x2 − 2− x2 − 3x3 mod (x3 + 1)

= 3 + 4x2 − 2− x2 + 3

= 4 + 3x2

2.4 Polynomial Ring arithmetic using Vectors & Matrices

When calculating with polynomials, this can also be broken down into vector and
matrix calculations. As we will see, this has advantages in performance, but also
makes it easier to represent the polynomials when programming, as they can be
handled as arrays of numbers. To create vectors from polynomials, each polynomial
is separated into two vectors, the coefficient vector and the variable vector.

f(x) = a0 + a1x+ · · ·+ ad−1x
d−1 + adx

d =

a0

a1
...

ad−1

ad

·
[
1 x · · · xd−1 xd

]

The variable vector will always have the same shape as the coefficient vector. Be-
cause of the ring properties, the variable vector can always be factored out, since
all polynomials have the same one in common. For this reason, only the coefficient
vector will be written out in this thesis, to simplify the formulars.

When doing addition with such vectors, we just need to make sure that the vectors
have the same length, which means that the polynomials must have the same degree.
If this is not the case, we can fill the shorter vector with 0 so that they have the
same degree. As our polynomials are always defined in a commutative ring, the
associative, commutative and distributive properties apply. So addition would look
like the following:

13

Chapter 2. Mathematical Background

f(x) + g(x) = (a0 + a1x+ · · ·+ ad−1x
d−1 + adx

d) + (b0 + b1x+ · · ·+ bd−1x
d−1 + bdx

d)

=

a0

a1
...

ad−1

ad

+

b0

b1
...

bd−1

bd

=

a0 + b0

a1 + b1
...

ad−1 + bd−1

ad + bd

The process of multiplication is somewhat more complex, as the degree typically in-
creases when two polynomials are multiplied together. As previously demonstrated,
this is not the case when calculations are conducted within a polynomial ring. Ac-
cordingly, the polynomial ring Rq = Zq/(x

d + 1) ensures that the degree of the
polynomial will never exceed d. Consequently, even when performing multiplication,
the degree will remain less than d. In order to perform polynomial multiplication
as a vector operation, convolutions serve as an effective tool. These can be em-
ployed for a variety of polynomial multiplications, with a particular prevalence in
the Fast Fourier Transform algorithm. In this context, they are employed to reduce
the polynomial-polynomial multiplication with subsequent polynomial division for
the modulus into a representation of matrix-vector multiplication. The objective is
to construct a matrix that encodes not only the polynomial-polynomial multiplica-
tion but also the subsequent division. To achieve this, it is essential to utilise the
cyclotomic polynomial as a module and ensuring that the two polynomials are part
of the same ring. This can be expressed as f, g ∈ Zq/(x

d +1). In order to construct
the calculation, one of the polynomial coefficient vectors must be transformed into
a circulant matrix, where the diagonal and the lower triangle are positive and the
upper triangle (without diagonal) is negative. This matrix is then multiplied by the
other coefficient vector, resulting in the output coefficient vector. This new coeffi-
cient vector is identical to the result of the aforementioned polynomial multiplication
with subsequent division. The general case is illustrated below:

14

Chapter 2. Mathematical Background

f(x) · g(x) =

a0 −ad −ad−1 · · · −a2 −a1
a1 a0 −ad · · · −a3 −a2
a2 a1 a0 · · · −a4 −a3
...

ad−1 ad−2 an−3 · · · a0 −ad
ad ad−1 ad−2 · · · a1 a0

·

b0

b1

b2
...

bd−1

bd

=

c0

c1

c2
...

cd−1

cd

The following examples will show this for two polynomials f, g ∈ Zq/(x

3 + 1) with
f(x) = 3x2+4x+1 and g(x) = x2+6x+3, using a normal polynomial multiplication
and subsequent modulo, and the same with an single matrix-vector multiplication.

f(x) · g(x) = (1 + 4x+ 3x2) · (3 + 6x+ x2) mod x3 + 1

= 3 + 6x+ x2 + 12x+ 24x2 + 4x3 + 9x2 + 18x3 + 3x4 mod x3 + 1

= 3 + 18x+ 34x2 + 22x3 + 3x4 mod x3 + 1

= 3 + 18x+ 34x2 − 22− 3x

= −19 + 15x+ 34x2

f(x) · g(x) = (1 + 4x+ 3x2) · (3 + 6x+ x2) mod x3 + 1

=

1 −3 −44 1 −3
3 4 1

 ·
36
1

= 3 ·

14
3

+ 6 ·

−31
4

+ 1 ·

−4−3
1

=

−1915

34

= −19 + 15x+ 34x2

After these calculations the modulo operation could be applied on the coefficients
either in the polynomial or in the vector, to generate the finite coefficient ring.

15

Chapter 2. Mathematical Background

2.5 Multidimensional Rings

Rings can be not only in one dimension, but also in higher dimensions. This is
written, as usual, with the dimensions as exponents in the ring. So a m × n ring
matrix with modulus q would be written as Zm×n

q .

The same can be done with finite polynomial rings. To make it easier, we will first
define the ring R = Zq[x]/(x

d + 1) and based on this ring we will define the form of
a variable like A ∈ Rm×n, which would result in a m × n matrix where all values
are elements of the finite polynomial ring R.

In higher dimensions, calculations are carried out in accordance with the standard
mathematical rules. The aforementioned method is employed for the purpose of
multiplying higher-dimensional finite polynomial rings. This transformation entails
the conversion of each polynomial into a vector, or a matrix in the case of a multi-
plication. The process results in the generation of matrices of matrices and vectors
of matrices, which can be regarded as larger matrices due to the commutative law.
Consequently, the dimensions of matrices and vectors are augmented by the poly-
nomial degree, d. For a more comprehensive illustration of this concept, please refer
to Appendix A.1.

16

Chapter 3. Learning with Errors

3 Learning with Errors

This chapter will examine the Learning with Errors (LWE) algorithm (referred to as
Plain-LWE in this thesis) and its variants, namely Ring LWE (R-LWE) and Module
LWE (M-LWE). The objective is to develop a basic LWE-based encryption scheme
that will serve as the foundation for a homomorphic encryption system.

3.1 The Learning with Errors Problem

In 2005, Regev initially described the LWE problem [28]. He also demonstrated its
hardness, but a detailed examination of this proof is beyond the scope of this dis-
cussion. The fundamental concept is based on a discrete system of linear equations,
where error values are incorporated. This system of linear equations is composed
of four fundamental components: the coefficients A, the variables s, the additional
error e, and the results b.

A11s1 + A12s2 + · · ·+ A1msm + e1 = b1

A21s1 + A22s2 + · · ·+ A2msm + e2 = b1

... =
...

An1s1 + An2s2 + · · ·+ Anmsm + en = bn

This can be expressed as a matrix and vectors, as illustrated in equation 3.1 and is
the fundamental equation that underlies all LWE problems. The majority of the ob-
served differences can be attributed to the specific ring or matrix/vector dimensions
employed in each case. To construct a Plain-LWE scheme, it is necessary to set the
ring as R = Zq = Z/q. In all LWE schemes presented in this thesis, n = m.

A · s + e = b

A ∈ Rn×m
q , s ∈ Rm

q , e,b ∈ Rn
q

(3.1)

17

Chapter 3. Learning with Errors

The construction of an asymmetric encryption scheme necessitates the presence of
two distinct keys: a secret key, denoted by sk, and a public key, represented by pk.
The public key is used to encrypt a message, generating a ciphertext, ct. However,
it is not possible to decrypt the ciphertext with this key in order to recreate the
original message. This can only be accomplished with the secret key. In order for
this scheme to be operational, it is crucial to ensure that it is not possible to generate
the secret key from ciphertexts and/or the private key. For further insights into the
general structure of asymmetric encryption, please refer to [10].

In the context of LWE, s represents the secret key, while both A and b collectively
serve as the private key. The error term, e, will be discarded after the calculation
is complete, thus preventing any individual from gaining knowledge of it. If one
possesses both the secret and private key, the system of linear equations can be effi-
ciently solved using the Gaussian algorithm. However, for an individual with access
only to the private key, the number of unknowns is to high, rendering the system
unsolvable. Despite its seemingly straightforward nature, this equation is, in fact,
quite challenging to resolve. The difficulty can be reduced to variants of the Shortest
Vector Problem (SVP), which describes the complexity of identifying the shortest
vector in a lattice. While this is a relatively straightforward undertaking in smaller
dimensions, it becomes increasingly challenging as the dimensions increase.

3.2 LWE based encryption scheme

In this section, an elementary asymmetric encryption scheme will be constructed
based on the principal equation 3.1. This construction is loosely based on the
CRYSTALS-Kyber encryption scheme [4], but with some simplifications. The ob-
jective is not to develop a practical and secure encryption scheme, but rather one
that can serve as a foundation for subsequent investigations into the construction
of homomorphic encryption. Additionally, the aim is to transform the scheme from
Plain-LWE into R-LWE and M-LWE.

In order to construct a functional encryption scheme, it is necessary to develop three
algorithms:

1. KeyGen: For generating the private and secret key

2. Encryption: For encrypting some message m with the private key pk creating
a ciphertext ct

3. Decryption: For decrypting the ciphertext ct with the secret key sk retrieving
the original message m

18

Chapter 3. Learning with Errors

In order to construct a Plain-LWE encryption scheme, all calculations are done in
the ring R = Zq, where q is the modulus. If values from R are chosen uniformly, this
is denoted by x← R. Otherwise, if small values are chosen from R, this is written
as x← χR. This can be done by choosing uniformly from a set of small numbers all
in R (e.g., −4, . . . , 4 if q is big enougth), or by choosing from an error distribution,
such as the discrete Gaussian, as described in [28].

The initial stage of the process is to generate the private key, pk, and the secret
key, sk. This is detailed in Algorithm 1. It uses the LWE equation from 3.1 as
described before. The secret key, which the owner should never share, is the vector
s. The public key pk, which can be shared, consists of the transformation matrix A
and the transformed secret key plus the error b. The error e is discarded after the
computation of b. The values of e and s should be rather small, and A is uniformly
sampled from R.

Algorithm 1 Sample LWE: KeyGen
1. s← χn

R

2. A← Rn×n

3. e← χn
R

4. b = A · s + e
5. return (pk := (A,b), sk := s)

The encryption algorithm, which describes how to generate the ciphertext ct from
an message m with the public key pk is described in Algorithm 2. The errors e1

and e2 are randomly sampled with small values and used to create more uncertainty
around the message. The same message can therefore be encrypted with different
errors, which yields different ciphertexts. This makes it harder for attackers to find
patterns in the decryption. The value r is sampled randomly form 0 and 1. The
objective is to select a subset of A and b given that approximately 50% of the values
in r will be 0. Consequently, these columns in A and b are effectively irrelevant
(multiplied by 0). This helps to create more entropy between different encryptions,
as a different subset of A and b will be used to encrypt each time.
The newly created values and the public key are used in the calculation of two
values: u and v. The first term, u, is an transposed subset of A with some error:
u = AT · r + e1. It can be regarded as the inverse of b, with the secret term, s,
omitted. The term v represents the actual message value, which is calculated from a
subset of the variable b with a small error value added and the scaled message. The
complete calculation is as follows: v = bT · r+ e2 + (m · bq/2c). The scaled message
m · bq/2c is obtained by multiplying the original message, m, by the rounded-down

19

Chapter 3. Learning with Errors

version of half the modulus. This operation results in the values of the message
in the ring, which are either 0 or 1, being scaled from the message space into the
ciphertext space, (0 to q − 1). The resulting values are approximately as distant
from each other as possible, which is q/2.

Algorithm 2 Sample LWE: Encryption
Require: m ∈ Z2 = {0, 1}, pk = (A,b)
1. r← {0, 1}n
2. e1 ← χn

R

3. u = AT · r + e1

4. e2 ← χR

5. v = bT · r + e2 + (m · bq/2c)
6. return ct := (u, v)

The decryption of the ciphertext ct back to the original message m using the secret
key sk is described in Algorithm 3.

Algorithm 3 Sample LWE: Decryption
Require: ct = (u, v), sk = s
1. return

⌊
1

bq/2c ·
[
v − sT · u

]
q

⌉
2

To get a better understanding of the equation, consider the following simplification
of the term in Algorithm 3.

20

Chapter 3. Learning with Errors

⌊
1

bq/2c
·
[
v − sT · u

]
q

⌉
2

=

⌊
1

bq/2c
·
[
bT · r + e2 + (m · bq/2c)− sT · (AT · r + e1)

]
q

⌉
2

=

⌊
1

bq/2c
·
[
(As + e)T · r + e2 + (m · bq/2c)− sTAT · r− sTe1

]
q

⌉
2

=

⌊
1

bq/2c
·
[
(As)T · r + eT r + e2 + (m · bq/2c)− (As)T · r− sTe1

]
q

⌉
2

=

⌊
1

bq/2c
·
[
eT r + e2 + (m · bq/2c)− sTe1

]
q

⌉
2

=

⌊
eT r
bq/2c

+
e2
bq/2c

+m− sTe1

bq/2c

⌉
2

= bm′e2 =

m ∈ {0, 1} if
∣∣∣ eT r
bq/2c +

e2
bq/2c −

sT e1

bq/2c

∣∣∣ < q
4

error otherwise

As demonstrated by the calculation, by multiplying the cancellation term u with
the secret s, the transformation (As)T · r in v can be canceled out. This results
in the message with some error values being added to it. The erroneous message
will then be rounded, which will result in the original message. This process will
only be successful if the absolute value of all error terms together is smaller than
q
4
. This is due to the fact that the possible values in the message are separated by

a distance of q
2

from each other. Consequently, all values between − q
4

mod q = 3q
4

and q
4

are rounded back to 0, while all values between q
4

and 3q
4

are rounded to 1.
Consequently, provided that the message (either 0 or q

2
) is not shifted by more than

q
4
, it will remain within the rounding area of the original message. In the event that

the error terms exceed the value of q
4
, the resulting message will be a erroneous bit,

which consequently leads to a corrupted message.

The current definition of this algorithm allows only 1 bit to be encoded at the time.
This could be improved with some tricks, but for simplicity reasons we wont do that
here. To observe the functioning of this algorithm in practice, please refer to the
example in Appendix A.2.

21

Chapter 3. Learning with Errors

3.3 Transforming Plain-LWE to R-LWE and M-LWE

To transform the Plain-LWE encryption scheme described in the section before
into Ring-LWE encryption scheme, only a few changes need to be made. Most
importantly, a polynomial ring will be defined as R = Z[x]q/(xd + 1), with the
matrix dimension n = 1 and the degree d > 1. Because n equals 1 all vectors and
matrices only contain a single value, which is a polynomial, as d is now greater than
1. Consequently, instead of having a vector r, it will now be a polynomial in the
ring R, where all coefficients are either 0 or 1. The message to be encrypted is also
transformed into a polynomial in R with the message bits being the coefficients of the
polynomial. Because of this, d bits can now be encoded in one message. Instead of
using matrix arithmetic, polynomial arithmetic is now utilized. However, as stated
in section 2.4, the polynomial arithmetic in the ring can also be transformed into
matrix arithmetic. All equations stay the same and the structure of the Algorithms
does not change, only the values which are in- and outputted. An full example of
the three-step process for RLWE can be found in Appendix A.3.

In a similar way, Plain-LWE was transformed into R-LWE, R-LWE can be trans-
formed into Module-LWE. Todo this, only the matrix dimension needs to be increase,
so that n > 1. So instead of working with polynomials as in R-LWE, matrices and
vectors of polynomials will be used. Thus a combination of matrix and polynomial
arithmetic is necessary for computation. An example of such an calculation can
found in Appendix A.4.

Given the differing dimensions of the matrix n and polynomial degree d among the
various types of LWE, the variables and keys that must be stored and shared, as
well as the messages themselves, exhibit a corresponding variation in dimension. An
summarized overview of the differences can be found in Table 1.

As illustrated in the aforementioned table, Plain-LWE and R-LWE are each de-
pendent on a single dimension variable, either n or d, respectively. The internal
and external variables used in Plain-LWE frequently have varying dimensionalities.
These variables encompass matrices, such as A, which is a element of the private
key, as well as scalar values, such as e2 and elements of the ciphertext. However, the
majority of values are in the form of vectors. In contrast, R-LWE is characterized
by all values being polynomials (coefficient vectors) of size d. M-LWE, on the other
hand, is dependent on both dimension variables, as it is a generalization of the other
two. This results in all variables for M-LWE having the combined size of Plain- and

22

Chapter 3. Learning with Errors

Table 1: Comparison between the shapes of the internal & external variables for the dif-
ferent LWE Types. The polynomial degree is treated as a vector for better
comparison. For the message and the ciphertext ` refers to the length (number
of bits) of the message.

Plain-LWE R-LWE M-LWE

A Zn×n
q Zd

q Zn×n×d
q

s,b, e, e1 Zn
q Zd

q Zn×d
q

e2 Zq Zd
q Zd

q

r Zn
2 Zd

2 Zn×d
2

sk Zn
q Zd

q Zn×d
q

pk Zn×n
q × Zn

q Zd
q × Zd

q Zn×n×d
q × Zn×d

q

m `× Z2 d`/de × Zd
2 d`/de × Zd

2

ct `× (Zn
q × Zq) d`/de × (Zd

q × Zd
q) d`/de × (Zn×d

q × Zd
q)

R-LWE. Consequently, the smallest values are vectors of size d, while the largest
ones are 3D tensors of size n× n× d.

One notable shortcoming of Plain-LWE is that only a single bit can be encoded at a
time. Consequently, the resulting encrypted messages are of the form `× (Zn

q ×Zq),
where ` is the number of bits that needs to be encoded. In contrast, R-LWE and
M-LWE permit the encryption of ` bits in blocks of size d. If the number of bits is
a multiple of the dimension d, it can be split into `/d blocks. Otherwise, the last
block must be padded with zeros to create a full block. Consequently, in the worst
case, an additional encryption with a polynomial of size d is required to encrypt a
single bit.

The security of Plain-LWE is dependent on the matrix dimension n, whereas R-LWE
is reliant on the polynomial degree d. Conversely, M-LWE represents a combination
of the matrix dimension n and the polynomial degree d. Furthermore, the security
of all three schemes hinges on the modulus q. It can be inferred that the value of n
can be smaller in M-LWE than in Plain-LWE, and that the value of d can be smaller
then that in R-LWE. This can be verified by examining three distinct LWE-based
encryption schemes and their recommended security parameters, as illustrated in
Table 2. As can be observed in this table, the large value of n for Plain-LWE results
in matrices that are quite large. In contrast, the polynomials used in R-LWE are of
significantly smaller degree, and the dimensions in M-LWE are somewhere between
those of Plain-LWE and R-LWE for n and d. A more detailed analysis of the size
cost implications of these schemes will be presented in Chapter 5.1.

23

Chapter 3. Learning with Errors

Table 2: Variable size comparison of different LWE based encryption schemes

Source n d q

Plain-LWE Frodo [3] 752 32767
R-LWE Practical Key Exchange [32] 512 25601
M-LWE CRYSTALS-Kyber [4] 3 256 7681

3.4 Criteria for comparing LWE-based encryption schemes

To evaluate the efficacy of distinct cryptographic protocols, a multitude of quantita-
tive and qualitative criteria can be employed, as outlined in reference [15]. First, one
must consider the theoretical security of the algorithm. In the event that theoretical
vulnerabilities are identified, the algorithms can be modified to prohibit certain as-
sumptions that may have led to the vulnerability, or if the problem is fundamental,
the algorithm may not be suitable for use. The theoretical security of LWE, R-LWE,
and M-LWE has already been demonstrated (see [28], [22], and [19], respectively).

In addition to theoretical considerations, there are numerous practical factors to be
taken into account. As is the case with any software, there are a number of security
concerns that must be addressed, such as bugs and implementation vulnerabilities.
Additionally, practical concerns, including the time and memory costs of the al-
gorithms, must be considered. This thesis will focus on these latter two aspects,
as they are relatively straightforward to test and are of significant relevance when
considering the potential real-world applications of the algorithms. A comparative
analysis of the security features of the various schemes will not be undertaken, as it
would require a significant investment of time and resources that would exceed the
scope of this thesis.

The time costs are derived from the amount of computation required to generate
the keys, encrypt, or decrypt the data. The most precise number can be obtained
by counting the elementary operations a CPU needs to perform in order to run the
algorithms. To simplify this somewhat, the run time for different algorithms will be
used to obtain a time cost, which can be used for comparisons. In order to obtain
a meaningful value, multiple runs will be conducted for the same algorithm, and
the median value will be used. This should reduce the noise and return comparable
values. This time cost is also called the Performance of the algorithms.

The size cost refers to the runtime and memory requirements for computation and
the storage necessary for the storage of obtained results. The storage size in question
also holds significance not only for the system in which the algorithm is initially

24

Chapter 3. Learning with Errors

executed, but also for other systems as it represents the data to be transmitted.
In this thesis, the focus will be on the storage size, as its easy to compute and
compare.

The three LWE schemes can be compared to each other based on the aforementioned
criteria. The following chapter will present the construction of a homomorphic
encryption scheme based on these three schemes. Subsequently, the criteria will be
extended to facilitate a comparison between the homomorphic schemes.

25

Chapter 4. Homomorphic Encryption

4 Homomorphic Encryption

This chapter will present a general overview of the concept of homomorphic encryp-
tion (HE). Subsequently, the encryption scheme developed in the previous chapter
will be extended to create a homomorphic encryption scheme based on an already
existing HE scheme. This will result in an R-LWE-based homomorphic encryption
scheme. The forthcoming and novel step will be to generalise the concepts of the
R-LWE-based HE scheme into an M-LWE-based one. Finally, a brief overview will
be provided of additional criteria for comparing HE schemes with one another.

4.1 Introduction to Homomorphic Encryption

Homomorphic encryption is a specialized cryptographic system that enables the
execution of operations on encrypted data in a manner analogous to that of unen-
crypted data. Such operations may include, but are not limited to, addition and
multiplication. This capability permits the outsourcing of data storage and compu-
tation to external services while maintaining the confidentiality of the data. This
results in the formation of a zero-trust environment, wherein the necessity for trust
in external providers is negated due to their inability to decrypt the data, while
they remain capable of working with it. Moreover, the occurrence of data breaches
would be effectively eliminated, as the data is always encrypted.

The concept was initially proposed by Rivest et al. in 1978 [29]. The authors
proposed a homomorphic encryption (HE) scheme based on RSA, which is able
to perform multiplication operations. This allows for the multiplication of two ci-
phertexts, each encrypted with the same RSA private key, with the result of the
multiplication being retrievable after decryption. This result will be identical to
that which would be obtained if the two ciphertexts were multiplied unencrypted.
A system that is capable of performing a single operation (e.g., multiplication) for an
unlimited amount of times is referred to as Partially Homomorphic Encryption
(PHE) [1, 8]. Similarly, the same principle can also be observed with the El Gamal
cryptosystem [11] for multiplication or the Paillier cryptosystem [26] for addition.
If an encryption scheme with the capacity to perform addition and multiplication

26

Chapter 4. Homomorphic Encryption

on a single ciphertext can be constructed, then fully powered compute engines can
be created using homomorphic circuits based on NAND gates in binary space.
But for a long time, it was not feasible to integrate addition and multiplication
into a unified encryption scheme until the advent of the BGN scheme in 2005 [2].
The scheme allows for the realization of an arbitrary number of additions and a
single multiplication. This novel scheme can be classified as a Somewhat Homo-
morphic Encryption (SWHE) scheme. Such schemes permit the execution of
multiple types of operations, although only a limited number of times.

In 2009, C. Gentry introduced the first Fully Homomorphic Encryption (FHE)
scheme [13]. The scheme was based on an ideal lattice and enabled the execution
of addition and multiplication, which could be performed an unlimited number of
times. But the primary factor contributing to the initial success of the first FHE
scheme was the process of bootstrapping. The concept is to execute the decryption
process, but not with the conventional secret key, but rather with an encrypted ver-
sion of the secret key, frequently referred to as a ”refreshing key.” The decryption is
performed in a homomorphic manner on the ciphertext. This results in the genera-
tion of a new ciphertext, wherein the internal error is reduced while still maintaining
encryption. The new ciphertext can then be subjected to further operations, and if
the error increases, the bootstrapping technique can be re-executed. This allows for
the possibility of performing an unlimited number of computations, provided that
the bootstrapping process is repeated at regular intervals. However, there are two
significant drawbacks to this approach. Firstly, the bootstrapping process is highly
resource-intensive, which can lead to suboptimal performance. Secondly, the new
refresh key must be transmitted alongside the private key, increasing the amount of
data that needs to be sent. Furthermore, if an attacker is able to decrypt the refresh
key, they gain access to the secret key.

By employing this bootstrapping technique, SWHE schemes can be transformed
into FHE schemes, as they are capable of reducing their own internal error. This
innovation has led to the development of numerous new FHE encryption schemes
in the subsequent years. In 2011, Brakerski and Vaikuntanathan published two new
FHE schemes based on the bootstrapping technique. One was based on LWE [6] and
the other on R-LWE [7]. Subsequently, numerous enhancements have been proposed
(for further details, please see [1], [8] or [23]). One such enhanced scheme was the
BFV scheme (also called just FV scheme) [12], which will be used to create the HE
scheme based on the encryption scheme build in the last chapter.

27

Chapter 4. Homomorphic Encryption

Table 3: Comparison of the three different types of homomorphic encryption

HE Type Operations Number of
consecutive
operations

Examples

Partially Homomorphic
Encryption (PHE)

addition OR
multiplication

unlimited ElGamal [11],
RSA [30],
Paillier [26]

Somewhat Homomorphic
Encryption (SWHE)

addition AND
multiplication

limited BGN [2]

Fully Homomorphic
Encryption (FHE)

addition AND
multiplication

unlimited BVF [12],
LTV [20]

4.2 Creating an Somewhat Homomorphic Encryption scheme

In this section, the R-LWE based encryption scheme from section 3.3 will be extend
to create an SWHE scheme. In order to implement a homomorphic encryption
scheme based on LWE, it is necessary to define three additional functions in addition
to the three functions defined in section 3.1:

1. Addition: This operation takes two ciphertexts as inputs and returns a new
ciphertext by adding them together.

2. Relinearization KeyGen: This operation accepts a secret and a mapping
value as input and generates a Relinearization Key (rlk). The rlk is necessary
for creating a functional multiplication algorithm for LWE-based schemes. In
other HE schemes, such a process is often called evaluation key. In this context
we use the more specific term relinearization key.

3. Multiplication: This operation takes two ciphertexts and a rlk as inputs
and performs a multiplication operation on the ciphertexts, with the help of
the rlk, returning a new ciphertext.

The construction of the addition and multiplication operations will be based on a
slightly modified version of the BFV scheme [12]. The objective is to develop a fully
functional SWHE scheme that can subsequently be generalized to M-LWE. The step
of creating a FHE scheme using bootstrapping will not be addressed in this thesis,
as it was not feasible to incorporate it within the scope of this work. However,
given that bootstrapping is based on homomorphic operations, as long as these are
successfully implemented, it should be possible to also construct the bootstrapping
process.

28

Chapter 4. Homomorphic Encryption

Addition

The objective is to develop a method for adding encrypted messages in such a way
that the result is identical to that obtained by adding the plaintext messages. This
can be achieved by simply adding the matching ciphertext variables together. The
resulting error is thus increased linearly, as the errors from both ciphertexts are
simply added together. Further details on this approach can be found in the BFV
scheme.

Algorithm 4 R-LWE: Addition
Require: ct1 = (u1, v2), ct2 = (u2, v2)
1. return ctadd = ([u1 + u2]q, [v1 + v2]q)

The newly created ctadd can then be employed, like any other ciphertext, for de-
cryption or subsequent utilization in other operations. However, it is important to
remember that the error in it has increased, which may potentially result in the
generation of an incorrect decrypted message at some point.

Multiplication

Generating a functional multiplication operation in ciphertext space is a more com-
plex process. To simplify the subsequent derivations and explanations, a simplifica-
tion is made based on Algorithm 3 and can be seen in equation 4.1.

ct(s)q = v − s · u (4.1)

Let ct1 and ct2 be two ciphertext that we want to use, with ct1(s) = v1 − s · u1 and
ct2(s) = v2 − s · u2. The multiplication of these two values results in the equation
4.2

[ct1(s) · ct2(s)]q = [(v1 − s · u1) · (v2 − s · u2)]q

= [v1 · v2 − v1 · u2 · s− v2 · u1 · s+ u1 · u2 · s2]q
= [v1 · v2︸ ︷︷ ︸

vm

− (v1 · u2 + v2 · u1)︸ ︷︷ ︸
um

·s+ u1 · u2·︸ ︷︷ ︸
xm

s2]q

= [vm − um · s+ xm · s2]q

(4.2)

Equation 4.2 results in the formation of three blocks, each dependent on a different

29

Chapter 4. Homomorphic Encryption

power of s (s0 = 1, s1 and s2). In comparison to Equation 4.1, it can be observed
that the current equation is similar, with the exception of the additional xm · s2

factor. A method is required to approximate xm · s2 and combine it with vm and
um, in order to reduce the degree of the equation from two to one. This process is
known as relinearization. The formalization can be observed in Equation 4.3, where
v′m and u′

m are extended to include xm · s2 and r represents the error that is created
in this process, which should be minimized to ensure successful decryption.

[vm − um · s+ xm · s2]q = [v′m − u′
m · s+ r]q (4.3)

In order to resolve this issue, the modulus switching technique from BFV will be
employed. The initial step is to define a Relinearization Key (rlk), which masks
s2. In this process, the value s2 will be multiplied with a new constant, p. This
constant is essential for reducing the error that is generated when “decrypting” the
rlk (see equation 4.5). The form of the masked value is based on the public key (see
algorithm 1), such that when Arlk and brlk are “decrypted” with s, by putting them
in equation 4.1, the original value p · s2 is obtained. The generation of this rlk is
described in Algorithm 5.

Algorithm 5 R-LWE: rlk Generation
Require: s
1. A← Rp·q
2. e← χ

′
R

3. b = [A · s+ e+ p · s2]p·q
4. return rlk := (Arlk, brlk)

Utilizing the rlk, xm · s2 is now decomposited into two distinct components. One
component, designated xvm, is added to vm, while the other, xum, is added to um.

(xum, xvm) =

([⌊
xm · Arlk

p

⌉]
q

,

[⌊
xm · brlk

p

⌉]
q

)
(4.4)

The process of “decryption”, as illustrated in equation 4.5, reveals that xm, a random
element within Rq, is multiplied with the error erlk. This means, in worst case
xm = q− 1, which is then multiplied with an small error, for example 1. This would
mean the error is nearly q, but as discussed in section 3.2, the error should not be
bigger than q

4
, otherwise the decryption does not work. To mitigate this, the error is

30

Chapter 4. Homomorphic Encryption

divided by p, thereby reducing its impact. In order to permit the creation of xm · s2,
s2 was multiplied by p in the rlk to reverse the effect of dividing by p later on.

xvm − xum · s =
[⌊

xm · brlk
p

⌉]
q

−
[⌊

xm · Arlk

p

⌉]
q

· s

≈
[
xm · brlk

p
− xm · Arlk

p
· s
]
q

≈
[
xm · (Arlk · s+ erlk + p · s2)

p
− xm · Arlk · s

p

]
q

≈
[
xm · Arlk · s

p
+

xm · erlk
p

+
xm · p · s2

p
− xm · Arlk · s

p

]
q

≈
[
xm · erlk

p
+ xm · s2

]
q

(4.5)

The complete algorithm for multiplying can be found in Algorithm 6. In order for
the algorithm to function correctly, it is necessary to multiply each of the factors
by the value of 2

q
. Further details on this process can be found in the BFV paper

[12].

Algorithm 6 R-LWE: Multiplication
Require: rlk = (Arlk, brlk), ct1 = (v1, u1), ct2 = (v2, u2)

1. vm =
[⌊

2
q
· (v1 · v2)

⌉]
q

2. um =
[⌊

2
q
· (v1 · u2 + v2 · u1)

⌉]
q

3. xm =
[⌊

2
q
· (u1 · u2)

⌉]
q

4. xum =
[⌊

xm·Arlk

p

⌉]
q

5. xvm =
[⌊

xm·brlk
p

⌉]
q

6. return ctm := ([um + xum]q , [vm + xvm]q)

4.3 Generalizing from R-LWE to M-LWE

The objective in this section is to extend the algorithms defined in the previous
section in order to make them applicable to M-LWE. As previously stated in section
3.3, M-LWE is a generalization of R-LWE, where matrices and vectors of polynomials
are used. Consequently, the dimension n will be set to a value greater than 1. In

31

Chapter 4. Homomorphic Encryption

consequence, the dimensions of nearly all variables do change (see Table 1). Most
importantly, u and s will now be vectors of length n, instead of single polynomials.

Addition

The addition operation has no impact on the shape of u and v, and thus the same
algorithm can be used as before. The only difference is that the input ciphertexts
and the newly created ciphertext are of shape Rn

q ×Rq.

Algorithm 7 M-LWE: Addition
Require: ct1 = (u1, v2), ct2 = (u2, v2)
1. return ctadd = ([u1 + u2]q, [v1 + v2]q)

Multiplication

In contrast, the concept of multiplication is more complex due to the necessity of
dealing with changing dimensions. When equation 4.1 is applied, the term s·u is now
a dot product between two vectors, rather than a simple polynomial multiplication.
The objective is, as before, to generate new v′m and u′

m terms, which can be used
for further operations or decryption. In contrast to the previous iteration, u′

m must
now be represented as a vector rather than a polynomial.

The equation resulting from the multiplication of two ciphertexts is given by Equa-
tion 4.6. Given the complexity of this equation and process, a brief overview of the
requisite steps will be provided in the subsequent paragraphs.

[ct1(s) · ct2(s)]q = [(v1 − s · u1) · (v2 − s · u2)]q

= [(v1 −
n−1∑
i=0

siu1i) · (v2 −
n−1∑
i=0

siu2i)]q

= [v1 · v2 − v1 ·
n−1∑
i=0

siu2i − v2 ·
n−1∑
i=0

siu1i +
n−1∑
i=0

n−1∑
j=0

u1iu2jsisj]q

= [v1 · v2 − v1 · u2 · s− v2 · u1 · s + sum((u1 ⊗ u2)� (s⊗ s))]q
= [v1 · v2︸ ︷︷ ︸

vm

− (v1 · u2 + v2 · u1)︸ ︷︷ ︸
um

·s + sum((u1 ⊗ u2︸ ︷︷ ︸
Xm

)� (s⊗ s))]q

= [vm − um · s + sum(Xm � (s⊗ s))]q
(4.6)

32

Chapter 4. Homomorphic Encryption

The first technique employed was to convert the vector dot product into its sum
form. As per the definition of the dot product between two vectors, it can be
rewritten as a sum: s · u =

∑n−1
i=0 siui. This step is derived from the calculations

presented in [24].
The subsequent step is to transform the resulting sums once more. With the single
sums, this is a relatively straightforward process, as they can simply be reformulated
as dot products with an additional scalar (polynomial) multiplication. Essentially
just reverting the previous step. With some bracketing and factoring out s, a new
vector um can be created.
For the double sum, it is a bit more difficult process to extract a new xm. The main
Idea here is, that because of the double sum, an n×n matrix with all combinations
of i and j is generated and all values are then added up. For example with n = 3

the following matrix will be created:

n−1∑
i=0

n−1∑
j=0

u1iu2jsisj = sum

u11u21s1s1 u12u21s2s1 u13u21s3s1

u11u22s1s2 u12u22s2s2 u13u22s3s2

u11u23s1s3 u12u23s2s3 u13u23s3s3

The sum operation is simply a summation of all values, which is sometimes referred
to as the grand sum. This is just a double dot product with a vector of length n,
where all values are 1, which is denoted by the symbol 1-vector (1): sum(X) :=

1 ·X · 1 =
∑n−1

i=0

∑n−1
j=0 Xij

The next step involves splitting the n × n matrix into two matrices, one for the
u values and one for the s values. This can be seen in the equation below. Each
term in the matrix is a product of four values, which can be split apart using the
Associative Law. The u and s values are then multiplied separately, and the two
matrices are multiplied together again using element-wise multiplication, also known
as the Hadamard product, denoted by the� symbol. Finally, the individual matrices
can be decomposed into vector operations. This can be achieved through the use of
the outer product, also referred to as the tensor product, which is represented by
the symbol ⊗.

u11u21s1s1 u12u21s2s1 u13u21s3s1

u11u22s1s2 u12u22s2s2 u13u22s3s2

u11u23s1s3 u12u23s2s3 u13u23s3s3

 =

u11u21 u12u21 u13u21

u11u22 u12u22 u13u22

u11u23 u12u23 u13u23

�
s1s1 s2s1 s3s1

s1s2 s2s2 s3s2

s1s3 s2s3 s3s3

= (u1 ⊗ u2)� (s⊗ s)

33

Chapter 4. Homomorphic Encryption

When doing all these steps, a separation between u and s is achieved. The new
factor u1 ⊗ u2 will be the new matrix Xm, as shown in equation 4.6.

The next step is to find a method for approximating the double sum in order to
add it to vm and um. This needs to be done in a manner analogous to equation 4.3.
Previously, a masking of s2 was employed in order to eliminate this term. In the
current context, an analogous issue arises with s⊗ s and a second problem emerges,
namely the shape of vm as a polynomial and um as a vector.
As a first step, it is necessary to revisit the original rlk generation process, as outlined
in Algorithm 5. In order to transform it into M-LWE, the same dimensions as those
employed in the standard M-LWE key generation process are used: specifically,
A ∈ Rn×n

p·q and e, s ∈ χ
′n
R . The original equation was b = [A · s+ e+ p · s2]p·q. When

calculating the first part of b we get A · s+ e, which is now an vector in Rn. As the
second part needs to be added to this vector, the masked part (formerly s2) needs to
be a vector of the same dimension. As s⊗s is a matrix of dimension n×n, it cannot
be used directly. However, it can be split into n n-dimensional vectors, which can
then be used instead. A similar approach must be taken with the u1 ⊗ u2 matrix.
The matching vectors of both matrices must be multiplied elementwise. This is a
feasible approach, as all values within the matrix will be summed collectively at the
final step, which can be done in any order (commutative law). This process is shown
in the equation below and with it, the Xm matrix is split into n n-dimensional xmi

vectors and there corresponding secret vectors s′i are created.

34

Chapter 4. Homomorphic Encryption

sum ((u1 ⊗ u2)� (s⊗ s))

= sum

u11u21 u12u21 u13u21

u11u22 u12u22 u13u22

u11u23 u12u23 u13u23

�
s1s1 s2s1 s3s1

s1s2 s2s2 s3s2

s1s3 s2s3 s3s3

= sum

u11u21

u11u22

u11u23

�
s1s1s1s2

s1s3

+

u12u21

u12u22

u12u23

�
s2s1s2s2

s2s3

+

u13u21

u13u22

u13u23

�
s3s1s3s2

s3s3

= sum

u11 ·

u21

u22

u23

� s1 ·

s1s2
s3

+ u12 ·

u21

u22

u23

� s2 ·

s1s2
s3

+ u13 ·

u21

u22

u23

� s3 ·

s1s2
s3

= sum

n−1∑
i=0

(u1i · u2︸ ︷︷ ︸
xmi

)� (si · s︸︷︷︸
s′i

)

In order to use si · s = s′i in the rlk generation, the fixed s2 in the original rlk

generation algorithm 5 needs to be replaced with a variable, so the different s′i can
be encoded. The rlk generation process for a single si is illustrated in Algorithm
8, where s′ represents the individual si · s values. However, n rlk values, as one is
required for each s′i, need to be created in order to encode the whole s ⊗ s matrix.
The full rlk generation can be found in algorithm 10.

Algorithm 8 M-LWE: rlk Generation for a single si
Require: s, s′ = si · s
1. A← Rn×n

p·q
2. e← χ

′n
R

3. b = [A · s + e + p · s′]p·q
4. return rlk := (As′ ,bs′)

As before, the rlk can be used to create two values, xum and xvm. These values
will be added to um ∈ Rn

q and vm ∈ Rq, respectively. Therefore, it is necessary for
these values to have the same shape. However, as the encryption process used near
identical formulas, the correct shapes come by themselves. Thus, equation 4.4 can
be translated into M-LWE, as shown in equation 4.7.

35

Chapter 4. Homomorphic Encryption

(xum, xvm) =

(
n−1∑
i=0

[⌊As′i · xmi

p

⌉]
q

,

n−1∑
i=0

[⌊
bs′i · xmi

p

⌉]
q

)
(4.7)

All this can be combined now into a single M-LWE multiplication algorithm, as seen
in 9. And the new updated Key Generation, with the generation of the rlk can be
seen in 10.

Algorithm 9 M-LWE: Multiplication
Require: rlk = ((As′0 ,bs′0), . . . , (As′n−1

,bs′n−1
)), ct1 = (u1, v1), ct2 = (u2, v2)

1. vm =
[⌊

2
q
· (v1 · v2)

⌉]
q

2. um =
[⌊

2
q
· (v1 · u2 + v2 · u1)

⌉]
q

3. xm =

([⌊
2
q
· (u10 · u2)

⌉]
q
, · · · ,

[⌊
2
q
· (u1n−1 · u2)

⌉]
q

)
4. xum =

∑n−1
i=0

[⌊
As′

i
·xmi

p

⌉]
q

5. xvm =
∑n−1

i=0

[⌊
bs′

i
·xmi

p

⌉]
q

6. return ctm := ([um + xum]q , [vm + xvm]q)

Algorithm 10 M-LWE: KeyGen
1. s← χn

R

2. A← Rn×n

3. e← χn
R

4. b = A · s + e
5. rlk = ()
6. for i = 0 to n− 1 do
7. Ai ← Rn×n

p·q
8. ei ← χ

′n
R

9. bi = [Ai · s + ei + p · s · si]p·q
10. rlki = (Ai,bi)
11. end for
12. return (pk := (A,b), sk := s, rlk := rlk)

Generate R-LWE from M-LWE

One simple method for evaluating the efficacy of the generalization is to generate the
R-LWE scheme from the M-LWE scheme with n = 1. The initial step is to calculate
the rlk. With a dimension of 1, there is only a single rlk, which is calculated with

36

Chapter 4. Homomorphic Encryption

s′0 = s0 · s = s0 · s0 = s2. It can be seen that the M-LWE rlk(s, s2) (see algorithm 8)
is identical to the R-LWE rlk(s) (see algorithm 5), as both A1×1 and e1 are single
polynomials. As with s, the vector u is a single polynomial. Consequently, the
calculation of um is identical between M-LWE (algorithm 9) and R-LWE (algorithm
6). Furthermore, only a single xm value is required in M-LWE (as n = 1), which is
then used to calculate both xu and xv, which are also single polynomials. Therefore,
the entire calculation is identical to the R-LWE multiplication, which is a positive
indication.

4.4 Criteria for comparing LWE-based homomorphic encryption
schemes

In order to conduct a comparative analysis of homomorphic encryption schemes, the
same methodology previously outlined in Section 3.4 can be employed to evaluate
the underlying encryption and decryption mechanisms. As previously outlined, the
model can be evaluated in terms of its theoretical robustness and practical viability
in an operational context. As with the previous criteria, the size and time costs play
a crucial role in the evaluation of HE schemes. However, to gain a comprehensive
understanding of the relative efficiency of HE schemes, it is necessary to extend the
analysis to encompass additional features. First, the relinearization key (RLK) must
be included in the comparison of both costs. As an additional parameter that must
be shared, the size cost of this parameter can be compared between the different
LWE types. Furthermore, the additional time required for this calculation must be
incorporated into the overall time cost of the key generation process, where the rlk

generation takes place.
To assess the performance of the two new operations, addition and multiplication,
additional time cost tests also need to be created. The performance differences
between the various LWE types can be evaluated by simply running the operations
multiple times. To minimize the impact of random variation, all tests should be
conducted multiple times with identical parameter settings, and the median value
should be used as the representative result. Given that the inputs and outputs are
ciphertexts, it is not necessary to conduct an additional size cost test.

Furthermore, it is essential to ascertain the additive and multiplicative depth. This
is the number of consecutive calculations that can be performed while maintaining
the ability to successfully decrypt the ciphertext. To improve accuracy in prediction,
it is necessary to examine the evolution of the errors associated with addition and
multiplication. This allows for a more precise evaluation of the influence of the

37

Chapter 4. Homomorphic Encryption

variables on the outcome depth. This process may be accomplished by sequentially
executing the desired operation and then verifying that the resulting decryption is
consistent with the anticipated outcome.

38

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

5 Comparison of the SWHE scheme for Plain-, R- and
M-LWE

In this chapter the SWHE scheme described in the previous chapter will be applied
to the three LWE types, namely Plain-LWE, R-LWE and M-LWE, to compare them
based on the criteria already described in section 3.4 and 4.4

When comparing the three LWE types, the primary distinctions is related to the
two dimension variables, the matrix dimension n and the polynomial degree d. As
outlined in previous sections, when n > 1 and d = 1, a Plain-LWE scheme is ob-
tained. Conversely, when n = 1 and d > 1, the resulting scheme is R-LWE and
when n > 1 and d > 1, the scheme is M-LWE. The first comparison will be based
the size cost of the output variables, that are created when running the schemes.
The size cost of the output variables can be compared based on the two dimension
variables n and d and the moduli q and p. These output variables are the secret key
sk, the private key pk, the relinearization key rlk and the ciphertext ct.
The second comparison will concentrate on the time cost of the algorithms for the
different schemes. These algorithms are the KeyGen, the Encryption, the Decryp-
tion, the Addition and the Multiplication. To create a comparative analysis of the
models performance, an example implementation in Python was constructed and
the resulting data is used to evaluate the different schemes. As the same algorithm,
with varying dimensions (n and d), can be utilized to describe all three schemes,
the relative performance between them can be effectively assessed. However, given
that Python is a relatively slow-performing language and the code is not optimized,
the absolute values may not be entirely meaningful. Nevertheless, the relative per-
formance between the schemes should remain comparable.
As a third comparison the additive and multiplicative depth will be compared to
each other. These values show how often the operation can be redone, until de-
crypting the ciphertext is not longer working correctly, as the error has grown to
big.

39

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

5.1 Size cost comparison

The initial comparison is the size in bits of the various output variables generated
when working with the different LWE based HE schemes. The output is dependent
on four variables: the matrix dimension n, the polynomial degree d and the number
of bits of the modulus values, written as qb and pb.
In the case of Plain-LWE, the polynomial degree is equal to one, while in R-LWE, the
matrix dimension is equal to one. For M-LWE, the polynomial degree and matrix
dimension are greater than one. The size of the different variables can be calculated
based on the dimensions defined in Table 1. As the rlk is essentially a modified
private key, it has the same dimension; it is simply required n times. Additionally
the modulus is bigger, as it incorporates the modulus p. All equations for computing
the number of bits needed for the different variables for the schemes can be found
in Table 4.

Table 4: LWE output variable size in bits based on n, d, qb and `

Plain-LWE R-LWE M-LWE

sk n · qb d · qb n · d · qb
pk (n2 + n) · qb 2 · d · qb (n2 + n) · d · qb
rlk n · ((n2 + n) · (qb + pb)) 2 · d · (qb + pb) n · ((n2 + n) · d · (qb + pb))
ct (n+ 1) · qb 2 · d · qb (n+ 1) · d · qb

To provide a more intuitive understanding of the differences between the various
schemes, a simulation of the values can be observed in Figure 2. The development
of the number of factors is plotted for the different schemas based on n and d. The
number of factors represents the amount of distinct variables that need to be stored
for the output variable. It is equivalent to the equations in Table 4 if qb = 1 or
qb + pb = 1. When calculating the total storage size in bits, the number of factors
can be multiplied with the number of bits needed for the moduli.
In the case of Plain-LWE, the matrix dimension, n, is plotted against the number
of factors. In contrast, for R-LWE, the polynomial degree, d, is plotted against the
number of factors. Given that M-LWE relies on two variables, namely n and d, it
was decided that the best approach would be to plot n against the number of factors,
with multiple lines representing different values of d. This was done to simplify the
visualization of the differences, as a three-dimensional plot is more challenging to
comprehend, particularly when printed in two dimensions. Additionally, the value
of d is always linear in relation to the number of factors, indicating that it solely
affects the slope of the change in n, as evidenced in the plot.

40

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Figure 2: The graph illustrates the growth in the number of factors (y-axis) against the
dimensions (x-axis). Each of the three columns of plots represents a distinct
scheme, as indicated at the top of the figure. The rows represent the output
variables, which are indicated on the right-hand side of the right plot. In Plain-
LWE and M-LWE, the x-axis is represented by the variable n. In contrast,
R-LWE employs the variable d. In the case of M-LWE, the diverse line types
serve to differentiate between distinct values of d.

41

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

The growth rates observed for the secret key sk are linear with regard to the variables
n and d for Plain-LWE and R-LWE, respectively. M-LWE exhibits a linear relation-
ship with either n or d. When both variables grow simultaneously, the growth rate
becomes quadratic. As a consequence, the growth rate for the number of factors in
this case exhibits a significantly higher rate of increase than that observed for the
other two schemes.

The linear growth rate observed for the sk in R-LWE remains for both the private
key pk and the relinearization key rlk, but with an steeper incline. In contrast, the
growth rates for the other two schemes exhibit a significant increase, particularly
with regard to the matrix dimension n. For Plain-LWE the growth rate of the
private key pk is quadratic, while for the relinearization key rlk, it is even cubic.
When increasing the polynomial degree d simultaneously, the growth rate for M-
LWE becomes cubic or quartic, respectively. It is also noteworthy that the rlk does
not employ the conventional modulus q, as all the other parameters do, but rather
the larger modulus q · p. As both moduli are represented in the computer as binary
numbers, the maximum space they require can be expressed as 2qb · 2pb = 2qb+pb .
Therefore, rather than requiring qb bits, it is necessary to use qb+pb bits to represent
each factor for the rlk. This contributes to the unfavorable growth rates observed
in Plain-LWE and M-LWE, as more and significantly larger numbers are needed.

The ciphertext ct exhibits a similar growth pattern to that of the secret key sk.
For Plain-LWE and M-LWE, the growth behavior is nearly identical, with the sole
distinction being that, rather than n, n + 1 is utilized. This is negatable when n

is increasing. As n = 1 for R-LWE, the increment of 1 results in a doubling of
the requisite number of parameters, thereby causing the incline to double, but the
growth rate remains linear.

One important note that need to be done, is the difference between word-wise and
bit-wise FHE schemes [21]. The difference is, that bit-wise FHE operates at the
single bit level and word-wise FHE operates on the whole word (eg, 64 bit). This
means that each polynomial can be seen as a word and operations can be done
all at once and the polynomial dimension d defines the word size. For a bit wise
scheme, the logic needs to be done bit wise, which means that a lot more operations
need to be done, which makes bit-wise slower. In this thesis, BFV was chosen as
backbone for the created M-LWE HE scheme, which is a word-wise scheme, but by
choosing d = 1 it is essentially turned into a bit-wise scheme. In practical terms, this
implies that R-LWE and M-LWE are capable of encrypting an entire word at once,
for example, 32- or 64-bit numbers. In contrast, Plain-LWE requires that each bit

42

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

be encrypted individually. This necessitates the decomposition of words into their
constituent bits, followed by their encryption and the construction of operations
based on these single-bit ciphertexts. This approach not only demands greater
computational resources but also requires more space for storing the additional data.
Further advantages and disadvantages are detailed in reference [21].

In general, R-LWE requires the fewest number of factors and the smallest amount
of physical space to store its output variables. In comparison, Plain and especially
M-LWE require a greater number of factors and a greater amount of physical space.
Furthermore, the growth rate for R-LWE is significantly lower than that of Plain
and M-LWE. In defense of M-LWE, it should be noted that in practice the matrix
dimension n is quite small. In the CRYSTALS-Kyber scheme [4], the values are
set between 2, which corresponds to low security, and 4, which corresponds to high
security. This can be achieved because the security of the system is not solely
dependent on the matrix, but also on the polynomials. In contrast to Plain-LWE,
significantly larger values of n are required for security. In the Frodo encryption
scheme [3], which utilize Plain-LWE, values between 352 for low security and 864

for high security and a value of n = 752 is recommended. This results in the number
of factors exceeding 400 million just for the rlk.

A comparison of the physical space required for the various encryption schemes, with
variables based on the regular/recommended security level of published encryption
schemes that employ the underlying method, can be found in Table 5. It is im-
portant to note that the results should be interpreted with caution and that direct
comparisons between the numbers are not possible. However, the data provides a
general indication of the differences between the schemes. Notably, the variables
for Plain-LWE are considerably larger than those for the other two, requiring more
than 3 gigabytes, solely for the rlk. Even tho the ciphertext ct is the smallest for
Plain-LWE, this amount of disk space is necessary for each bit, whereas R-LWE
and M-LWE can store 512 or 256 bits, respectively, with a slightly larger ct. With
the exception of the ciphertext, R-LWE has the smallest overall size for every vari-
able. However, as it can store twice the information of M-LWE and, as previously
mentioned, 512 times more than Plain-LWE, it requires the smallest amount per bit
stored.

In conclusion, the comparison based on the size of the output values indicates that
R-LWE has the slowest growth of physical space needed based on its dimension
variables. Although M-LWE has the fastest growth rate, as it is based on multiple
dimension variables, this makes it far more secure than Plain-LWE. Consequently,

43

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Table 5: Theoretical LWE Output Variable size in Kilobyte (KB), based on variables for
the regular/recommended security level of published encryption schemes. The
modulus p = q3; pb = qb ∗ 3 as described in BFV

Source n d q qb sk pk rlk ct

Plain-LWE [3] 752 32767 15 1.41 1061.73 3193684 1.41
R-LWE [32] 512 25601 15 0.96 1.92 7.68 1.92
M-LWE [4] 3 256 7681 13 1.25 4.992 59.904 1.66

the dimensions can be smaller in general to achieve a similar level of security, which
results in a smaller physical size of its output variables. In terms of storage re-
quirements for the output variables, Plain-LWE is by far the most demanding, with
M-LWE requiring more physical space than R-LWE, except for the ciphertext. How-
ever, the difference in these requirements is not as significant as that observed in
the comparison with Plain-LWE.

5.2 Time cost comparison

The objective of this section is to perform a comparative analysis of the runtime
performance of the algorithms with respect to a selected set of input parameters. To
minimize the impact of noise, multiple iterations of each algorithm were executed
with the same inputs, and the median time value in seconds was calculated. In total,
there are four parameters that can be modified: the dimensions n and d, as well
as the modulus values q and p. To simplify the analysis of multiple variables and
enhance the visualization of the differences, two performance tests were conducted.
One test was conducted with varying dimension variables n and d, while the modulus
values q and p were constant. The second test was performed with the variables n

and d fixed while the modulus values q and p were varied. This should provide
a more straightforward means of illustrating the impact of these variables on the
performance of the algorithms. The algorithms that are evaluated are the KeyGen
(Algorithm 10), the Encryption (Algorithm 2), the Decryption (Algorithm 3), the
Addition (Algorithm 7) and the Multiplication (Algorithm 9).

The initial comparison is that of processing time, based on the two size dimen-
sions, namely, n and d. The results of the comparative analysis of the algorithms’
performance are presented in Figure 3.

In the figure, Plain-LWE is illustrated in the left column, in the line representing
d = 1, and R-LWE is shown in the right column with n = 1. All other lines represent
distinct versions of M-LWE. It can be observed that the KeyGen and Multiplication

44

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Figure 3: Performance of the main algorithms in regard to dimensions n and d and the
time in seconds. Each row is a different algorithm, as stated always above the
left plot. The left column plots the time against n for some d values. The right
column plots the time against d for some n values.

45

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

algorithms are the most time-consuming. Regardless of whether n or d is increased,
these algorithms exhibit an exponential growth in time cost. However, the rate of
increase for d is relatively modest, in contrast to the significant rise observed in
the case of n. This exponential growth can be attributed to the fact that, in or-
der to perform matrix multiplication, the number of scalar multiplications increases
quadratically. One potential solution to this issue is the use of dedicated matrix
multiplication hardware, which performs the entire operation in a single step, or
the incorporation of other optimized libraries. But, as it was necessary to work
with numbers larger than 64 bits, it was not possible to use such libraries in the
implemented system. These optimized libraries (such as numpy) only support 64-bit
integers in python. Therefore, the arbitrary size integers in pure Python were used
and a simple matrix multiplication algorithm was created, which is not optimized.
This provides an explanation as to why the increase of n results in exponential
growth, but also demonstrates that this phenomenon occurs at a slower rate when d

is increased and n stays fixed. The rationale behind this is that, in order to perform
polynomial multiplication, the methodology outlined in Section 2.4 was employed,
which translates polynomial multiplication into matrix-vector multiplication. As
the value of d increases, the dimensions of the matrix also increase, resulting in
a quadratic growth in the number of multiplications required, following the same
pattern previously described. The combination of these two facts also explains why
the growth for n is more pronounced. In addition to the increase in the number
of polynomial multiplications due to the larger dimensions, each new polynomial
multiplication also exhibits a quadratic runtime. As the number of matrix multipli-
cations increases, the algorithms become less efficient, exhibiting a decline in speed.
This phenomenon is most evident in the KeyGen and Multiplication, where a single
matrix multiplication is required for each rlk, which increases linearly with n. Con-
sequently, these algorithms are quite slow. The Encryption algorithm requires only
a single matrix-vector and one vector-vector multiplication, resulting in a quadratic
growth rate. This makes it significantly faster than the previously mentioned al-
gorithms. In contrast, Addition does not require any multiplication, making it the
fastest algorithm by far. As only vectors need to be added, the time growth is also
linear, as the number of additions scales linearly with the size of the vectors. With
the Decryption, there is a very interesting pattern. While the runtime scales linearly
with the increase of n, it has a quadratic growth with the increase of d. This is due
to the quadratic scaling of the matrix required for the polynomial multiplication, as
previously explained.
In consideration of the overall performance, the impact of the dimensions can re-

46

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

sult in a significant decline in performance, potentially by a factor of multiple and
even orders of magnitude. Therefore, n and d exert a considerable influence on the
performance.

The second cost comparison is based on the development of the modulus q and p,
as illustrated in Figure 4. The quantity represented by the variable qb in the graph
is the number of bits for the modulus q = 2qb , while the quantity represented by the
variable pf is the factor by which the q bits are multiplied to retrieve the modulus
p = 2qb·pf . The rationale for this is that the value of p should be a multiple of several
orders of magnitude greater than that of q, as outlined in the BFV paper. Since the
x-axis plots the qb or pf factors, the axis uses a logarithmic scale with respect to the
actual modulus values.

Upon examination of the data, it becomes evident that there are two distinct
groups of algorithms: KeyGen+Multiplication and Encryption+Decryption+Ad-
dition. The former exhibits a linear increase in time consumption, while the latter
displays a pattern of steps and a constant time consumption between steps, as qb

increases. The primary distinction between these two groups is that the former re-
quires the use of p for computations, whereas the latter employs solely q. This is
also the reason why, for the right graphs associated with group one, there is a linear
increase with the increase of p, whereas for group two, this value remains constant.
Group two, on the left side, exhibits performance jumps around 16 and 32 bits. It is
plausible that Python has internal improvements for 16 and 32 bit numbers. How-
ever, this is not observed in the first group, as they calculate with numbers greater
than 32 bits due to the usage of p.

In general, it can be observed that the variables q and p exert a relatively minor
influence on performance, particularly in comparison to the dimension variables. As
evidenced by the data, even a significant discrepancy in q and p only results in a
40% increase in the time required for multiplication. Especially, when considering
the range of p values, from 1 · 4 = 4 bits to 64 · 8 = 512 bits, which is an increase by
factor 128.

To provide some real-world examples, the same parameters as in the previous section
(see Table 5) were used to calculate the performance in seconds, which can be
seen in Table 6. The Plain-LWE version was excluded from the comparison due
to the discrepancy between the required memory and the available memory, which
prevented its execution. Even if the limitation could be overcome, the runtime
would be significantly slower than that observed for the other two versions. A

47

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Figure 4: Performance of the main algorithms in regard to modulus with qb bit and the
modulus factor pf , which represents qb ·pf bit in regards to the time in seconds.
Each row is a different algorithms, as stated always above the left plot. The left
column plots the time against qb for some pf values. The right column plots the
time against pf for some qb values.

48

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

comparison of the two other two schemes reveals that they both operate within
the same order of magnitude. With the exception of the decryption algorithm, the
R-LWE algorithms are consistently faster than their M-LWE counterparts. This
discrepancy in decryption time may be attributed to the fact that R-LWE has twice
the polynomial degree d, compared to M-LWE. But this also means, that R-LWE
works with the double word size at the same time, which allows for bigger numbers to
be operated on. Additionally, it is not unexpected that the M-LWE version is slower
than R-LWE, as the higher matrix dimension, n, necessitates more calculations.

Table 6: M-LWE and R-LWE Performance in seconds, based on variables for the regu-
lar/recommended security level of published encryption schemes

Source Addition Decrypt Encryption KeyGen Multiplication

R-LWE [32] 0.000163 0.061521 0.125041 0.182526 0.473052
M-LWE [4] 0.000176 0.041224 0.174293 0.696122 1.039662

As previously demonstrated, the majority of algorithms exhibit a quadratic growth
in runtime with respect to the dimension variables, namely n and d. This is growth
rate is especially problematic for KeyGen, which has the advantage of being executed
only once per session, and for multiplication, which is a significant challenge for ho-
momorphic encryption schemes. In order to maintain satisfactory performance, it is
advisable to minimise the dimensions, with particular attention paid to the matrix
dimension n, which exhibits a higher growth rate and therefore a greater influence.
In contrast, the influence of the modulus q and p on performance is comparatively
minor, particularly in comparison to the dimension variables. Thus, increasing these
variables results in a slight decline in performance, but not a drastic one. When
examining real-world parameters, it becomes evident that R-LWE remains the best
choice, closely followed by its M-LWE counterpart. Plain-LWE exhibits a consid-
erable memory footprint, which would also result in a significant decline in perfor-
mance, rendering it impractical to run this version at all in practice.

5.3 Comparison of the additive and multiplicative depth

As a last test, the additive and multiplicative depth of the LWE based HE schemes
will be compared. As the number of operations performed in a homomorphic man-
ner increases, the resulting error grows in magnitude. After a certain number of
operations, the accumulated error becomes so significant that the decryption pro-
cess yields incorrect numerical values. The source of the error is the ciphertext itself,

49

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

which is the foundation of LWE’s security. This section will examine the maximum
depth and the extent of the error growth for addition and multiplication operations,
as well as the impact of dimension variables n and d, and modulus variables q and
p.

The following statistical data were derived from a process whereby an operation
was performed repeatedly with on a random ciphertext. The initial step involved
encrypting a randomly generated message, thereby creating the original ciphertext.
In each iteration, a new, randomly generated message was encrypted, resulting in
a new, second ciphertext. Subsequently, the new, second ciphertext was added or
multiplied, depending on the specific test, to the original message, thereby updat-
ing it. After that, the updated ciphertext was evaluated to ascertain whether the
resulting message, obtained through decryption, exhibited the same outcome as if
the calculations had been performed in plaintext space. The discrepancy between
the present ciphertext and the correct plain text, the error, was recorded for each
iteration. This process is then repeated until either the decrypted message does not
match the expected result or until a pre-defined maximum limit is reached, as oth-
erwise the procedure would take an excessive amount of time. For each parameter
set, this process was repeated multiple times to reduce noise. The median values
for each round were then calculated. The rounds are referred to as depth, which
denotes the number of consecutive operations that can be performed.

First, the additive depth and error will be subjected to examination. The graphs il-
lustrating this can be seen in Figure 5. The addition is dependent on three variables:
the two dimensional variables and the modulus, q. The modulus p is not a required
component of the addition process and therefore does not exert any influence on
it. The figure illustrates the evolution of the error with depth for various configu-
rations of the dimensions and for different modulus values. Once more, the value
of qb represents the exponent, and the utilized modulus is defined as q = 2qb . The
error axis is logarithmic in order to facilitate the visualization of the comparative
magnitude of the errors. A logarithmic curve is observed in nearly all of the graphs,
indicating that the error grows in a linear fashion with depth. In the event that the
value of q is insufficient, the curve will be terminated prematurely, as the resulting
error is too high for successful decryption. As the value of qb increases, the minimum
error decreases, thereby enabling a greater number of operations. However, when
n or d are increased, the minimum error rises due to the number of total factors
and with that more error in the system. Accordingly, as the dimensions increase,
a larger modulus must be selected to facilitate subsequent additions. The linear

50

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Figure 5: Additive Error Development

51

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

growth can be attributed to the fact that the errors resulting from the addition are
simply added together, as outlined in algorithm 7. Therefore, the resulting error is
equal to the sum of the two errors from the ciphertexts. In this experiment, only
freshly encrypted data with a minimal error was added to one ciphertext. In prac-
tice, however, ciphertexts with larger errors will also be added, as they will have
undergone previous operations. When the errors are combined, the growth rate will
be faster than that shown in the graph. Nevertheless, the growth rate remains linear
and thus manageable with a sufficiently large modulus. This makes it possible to
run more then 200 additions easily, as can be seen by the error in the graphs. Also
the maximum used modulus with q = 232, is not that high and bigger ones could
be used without any problem making it possible to run many more additions in a
row.

A comparison of the various LWE schemes reveals that the difference in computa-
tional depth for addition is not significant when evaluated based on depth alone.
A comparison of the associated data indicates that the variables n and d exert a
comparable influence on the reduction of computation depth. Consequently, an eval-
uation of the graphs suggests that Plain-LWE (first row) and R-LWE (first column)
exhibit comparable performance for small dimensions. M-LWE, however, which in-
corporates both n and d into its formulation,results in a lower computational depth
for addition.

The next step is to analyse the multiplication process, which is illustrated in Figure
6. The multiplication function makes use of the modulus p for the modulus switching
component. The impact of this variable is illustrated by the colored bands displayed
alongside each graph. It displays the minimum to maximum error values for all
values of p at that depth. To obtain a comprehensive set of values, multiple runs
were conducted with identical dimension variables and modulus and varying pf

values between 1 and 15. These pf values were used to calculate the modulus
p = 2qb·pf . The primary line represents the median values for a given depth across
all p values.

In contrast to the behavior observed in the addition function, the error line in these
graphs is, in general, more linear. As the error axis employs a logarithmic scale,
the error grows exponentially with each multiplication. This results in a relatively
shallow depth, particularly when the dimensions are increasing. To illustrate, the
maximum depth attained in the bottom rightmost graph is 6, with an modulus
of q = 280. The aforementioned error growth is also elucidated in other studies
regarding LWE-based FHE schemes. For instance, in reference [5], it is detailed

52

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

Figure 6: Multiplicative Error Development

53

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

that the error for addition increases by a maximum of two, while for multiplication,
the error is quadratic in the worst case. These analogous growth rates are observable
in the graphs for addition and multiplication.

The value of p is utilized for the modulus switching process, with the objective of
enabling multiplication and concurrently reducing the error, as detailed in the BFV
paper. As evidenced by the graphs, this objective was not achieved for any value of p.
Furthermore, an additional trial was conducted, wherein the value of p was increased
to a considerably higher amount, specifically 1000. This resulted in the generation of
a modulus with a size of 2q∗1000. However, this approach did not yield any apparent
improvement in the outcomes observed for the higher-dimensional M-LWE schemes,
such as the one depicted in the bottom right region of the graph. The precise reason
why p has no tangible impact is yet to be determined. One potential explanation
for this discrepancy is the presence of numerical issues and minor rounding errors
associated with the manipulation of these large numbers in Python. In particular,
the process of dividing by p, as illustrated in steps 4 and 5 of algorithm 9, may
introduce rounding errors due to the conversion from an arbitrary-size integer to a
64-bit float. This could potentially contribute to the observed issue.

When comparing the influence of the variables n and d and, consequently, the various
schemes, on the multiplication error and depth, it becomes evident that, as was the
case with addition, both variables exert a roughly equivalent influence. Therefore,
irrespective of the variable that is increased, the computational depth rate will
decline to a similar extent. As observed in the case of multiplication and addition, by
enhancing the modulus q, the minimum error can be lowered, consequently leading
to an increase in the computational depth.

Table 7: A comparison of the computation depth of M-LWE and R-LWE for variable
modules, with q = 2qb and p = 2qb·3. The remaining parameters are based on
variables corresponding to the regular or recommended security level of published
encryption schemes. The resulting numbers are the median values when an error
occurred and thus no further calculations were possible.

Addition Multiplication
qb 13 15 20 32 64 128 13 15 20 32 64 128

R-LWE [4] - 56 200 200 200 200 - 0 0 1 3 7
M-LWE [32] 7 - 200 200 200 200 0 - 0 1 3 7

As a final comparative analysis, the R-LWE and M-LWE algorithms were once again
evaluated with the aid of a number of recommended parameters. The outcome of this

54

Chapter 5. Comparison of the SWHE scheme for Plain-, R- and M-LWE

comparison is presented in Table 7. In order to evaluate the computational feasibility
of the proposed approach, the experiment was conducted with increased modulus
values. Both the M-LWE and R-LWE versions are capable of performing addition in
their base configurations, however, the depth for the R-LWE is considerably higher
than that for the M-LWE. This comes from the fact that in their base versions, the
R-LWE version has a bigger modulus q then the M-LWE version. However, it was
not possible to perform multiplication for any scheme with the original modulus
values. As the value of q increased, the depth for addition could be easily raised to
the maximum depth for this comparison (200) for both schemes in an equal manner.
Achieving the desired increase in depth for multiplication proved more challenging.
With a modulus of 128-bits, only an average of seven computations in a row were
feasible. However, the values observed between the models are identical, indicating
that the error increase is approximately equivalent across both R-LWE and M-LWE.
In general it can be seen, that the R-LWE and M-LWE schemes are quite similar in
additive and multiplicative depth for the same modulus q.

As discussed before, with a polynomial dimension d for R-LWE that is twice that
of M-LWE, R-LWE is capable of processing significantly larger numbers.

55

Chapter 6. Conclusion

6 Conclusion

The principal objective of this thesis was to investigate the viability of transferring R-
LWE homomorphic encryption schemes to M-LWE and to evaluate the performance
of these novel schemes. The viability of this approach was evaluated by developing
an M-LWE HE scheme using the BFV scheme [12] as basis.

As detailed in Section 4.3, it is possible to extend R-LWE-based HE schemes to
M-LWE, thereby creating novel HE schemes where not only the polynomial degree
d but also the dimension size n of the matrix can be modified. This also permits
the creation of Plain-LWE HE schemes, as these are a special case of M-LWE,
where d = 1. To accomplish this, an M-LWE encryption scheme was extended
to accommodate homomorphic addition and multiplication operations. In the case
of the addition operation, this was a trivial process, as the values could be added
together in the same manner as was done previously with R-LWE. The process for
multiplication is somewhat more cumbersome and comprises a greater number of
steps. The primary challenge was the generation of an n × n matrix during the
multiplication of the ciphertexts. Given that the resulting ciphertext must retain its
original structure, comprising a polynomial and a vector of polynomials, this matrix
must be decomposed and incorporated into the other values. By decomposing this
matrix and multiplying it with n relinearization keys, rather than a single one, the
requisite output structure can be created, which, given a sufficiently large modulus
q, will decrypt to the desired results. Given the general nature of the decomposition
process, it seems reasonable to hypothesize that the same method could be applied
with minor modifications to other R-LWE-based HE schemes.

In examining the findings of the evaluation, it becomes evident that the M-LWE
scheme exhibits both advantageous and disadvantageous characteristics. Prior to
an in-depth examination of R-LWE and M-LWE, it is worthwhile to briefly consider
the characteristics of Plain-LWE. It is evident that a homomorphic version based on
BFV cannot be used to construct a practical encryption scheme with Plain-LWE.
The primary challenge lies in the substantial memory requirements for the variables
(see Table 5), particularly the relinearization key, which is significantly higher than

56

Chapter 6. Conclusion

what a practical implementation would allow. Even with future advancements in
memory, networking for transmission, and computing power, the size will remain
impractically large. Exchanging the key and performing operations with it will be
computationally expensive, making it infeasible. Given that the other two methods
are more effective, this finding is particularly noteworthy.

A comprehensive assessment of R-LWE and M-LWE reveals that it is not a straight-
forward task to reach a definitive conclusion. When comparing M-LWE and R-LWE
based on their parameter sizes, R-LWE appears to exhibit superior characteristics.
In contrast to M-LWE, the increase in parameters for R-LWE is always linear to
the polynomial degree d. Conversely, when the matrix dimension, n, is increased in
M-LWE, the private key, pk, and the relinearization key, rlk, increase exponentially,
resulting in a significant increase in memory consumption. In practice, smaller poly-
nomial degrees are employed for M-LWE, however, this does not offset the growth
in parameters resulting from higher matrix dimensions. This is evident from Table
5. The issue with the accelerated growth rate for the private key and relineariza-
tion key is, that these keys must be exchanged prior to the initiation of encrypted
communication. Given a fixed speed and capacity of networks, the establishment of
an encrypted channel is more time-consuming with M-LWE, as a greater volume of
data must be transmitted. However, the ciphertext is smaller for M-LWE than for
R-LWE, at least in practical analysis. This implies that, with sufficient data, the
initial higher cost can be offset and potentially reduced over the course of commu-
nication, allowing for the storage of more data with the same amount of disk space.
In an enterprise setting, this could enhance the viability of M-LWE over R-LWE.

Another characteristic that seems superior in R-LWE in contrast to M-LWE is the
processing time. As the calculations in R-LWE only depend on scalar polynomials,
less operation need to be done compared to the vector and matrix processing of
M-LWE. The big advantage of M-LWE is that the polynomial degree can stay fixed
and improving the security can be done purely by increasing the matrix dimension.
Therefore optimized multiplications can be implemented based on these fixed size
polynomials, instead of re-implementing optimized versions for the different R-LWE
security levels based on different polynomial degrees. Such matrix multiplication op-
timization are also currently being developed for the CRYSTALS-Kyber encryption
scheme [4], where hardware solutions have been constructed already ([18], [17]).
If these can be reused this would create new synergies between different M-LWE
based encryption schemes. The value of these optimizations is debatable, as the
optimized code can be written once and reused widely. Consequently, optimized

57

Chapter 6. Conclusion

versions of R-LWE and M-LWE will be developed, which should result in faster
R-LWE performance due to the lower number of required calculations.

The depth of operations for both the tested R-LWE and M-LWE scheme appear to
be essentially equivalent, as shown in Table 7. It appears that the polynomial degree
and matrix dimension exert a comparable influence on the outcome, suggesting that
augmenting one while reducing the other results in outcomes that remain within a
similar range. The most pronounced impact arises from the increase in modulus q,
which is consistent across both versions.

Another significant distinguishing factor between these two that merits considera-
tion, particularly when evaluating practical encryption protocols, is the word size.
This refers to the number of bits that each of the schemes is capable of encrypting
and working with in a single operation. In the practical examples, R-LWE utilises
a polynomial degree, that is equal to the word size, of 512, while M-LWE employs
a word size of 256. As the majority of computations and data structures operate
within a 32- or 64-bit system, these word sizes are the most relevant in practical
applications. Even when larger numbers are employed, 256- or 512-bit numbers
are uncommon. One potential methodology for enhancing the M-LWE HE scheme
would be to optimize it by reducing the polynomial degree (thereby reducing the
word size) and increasing the matrix dimension in a manner that minimizes the
ciphertext size while maintaining the same security level and avoiding an excessive
increase in memory size of the private key and relinearization key. This increases
the number of matrix multiplications, but because of the smaller polynomial degree,
these matrices are smaller. If the total number of multiplications needed does not
increase significantly, it would result in an even smaller ciphertext size, which would
bring all the earlier-discussed benefits. Such an scheme could be more useful and
efficient in a practical setting, where lots of ciphertext is created with the same
keys.

The aforementioned points raise significant questions regarding the potential for su-
perior performance of M-LWE over R-LWE. While it is evident that M-LWE can
achieve comparable performance to R-LWE in practical scenarios, a definitive con-
clusion awaits the resolution of numerous open questions.
The SWHE scheme that was created could be extended to a full FHE scheme by
applying bootstrapping. However, this process is already resource intensive, and it
may become even more expensive in M-LWE, potentially limiting its usability. As
an alternative, different already existing FHE schemes based on Plain or R-LWE
could be considered as basis instead of BFV.

58

Chapter 6. Conclusion

Furthermore, a more thorough examination of the security aspects could be con-
ducted, which would enable the creation of a more comprehensive performance
analysis, given that practical values for the various dimensions are then known.
Additionally, it would be valuable to investigate the impact of increasing the mod-
ulus on the security. Given the substantial size of the modules, there is a possibility
of reducing the dimensions.
A more practical study would be an improved implementation of this concept. One
of the current problems is the difficulty of implementing this concept in Python,
particularly when dividing large modulus values, due to rounding errors. Addition-
ally, the matrix multiplication process is quite slow and requires optimization. A
more detailed investigation into the potential for hardware acceleration using the re-
search conducted for CRYSTALS-Kyber (as previously mentioned) and comparisons
to enhanced R-LWE implementations could also yield valuable insights.

This leads to the conclusion that it is possible to change Plain and R-LWE encryption
schemes to M-LWE. However, more research is needed to make statements about
practical usability.

59

Bibliography

Bibliography

[1] Abbas Acar et al. “A Survey on Homomorphic Encryption Schemes: Theory
and Implementation.” In: ACM Comput. Surv. 51.4 (2018). issn: 0360-0300.
doi: 10.1145/3214303. url: https://doi.org/10.1145/3214303.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas
on Ciphertexts.” In: Theory of Cryptography Conference. 2005. url: https:
//api.semanticscholar.org/CorpusID:785423.

[3] Joppe Bos et al. Frodo: Take off the ring! Practical, Quantum-Secure Key
Exchange from LWE. Cryptology ePrint Archive, Paper 2016/659. https:
//eprint.iacr.org/2016/659. 2016. doi: 10.1145/2976749.2978425. url:
https://eprint.iacr.org/2016/659.

[4] Joppe Bos et al. CRYSTALS – Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Paper 2017/634. https://eprint.iacr.
org / 2017 / 634. 2017. doi: 10 . 1109 / EuroSP . 2018 . 00032. url: https :
//eprint.iacr.org/2017/634.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomor-
phic Encryption without Bootstrapping. Cryptology ePrint Archive, Paper
2011/277. https://eprint.iacr.org/2011/277. 2011. url: https://
eprint.iacr.org/2011/277.

[6] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic En-
cryption from (Standard) LWE. Cryptology ePrint Archive, Paper 2011/344.
2011. url: https://eprint.iacr.org/2011/344.

[7] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption
from ring-LWE and security for key dependent messages.” In: Proceedings of
the 31st Annual Conference on Advances in Cryptology. CRYPTO’11. Santa
Barbara, CA: Springer-Verlag, 2011, pp. 505–524. isbn: 9783642227912.

[8] Thi Van Thao Doan et al. “A survey on implementations of homomorphic
encryption schemes.” In: The Journal of Supercomputing 79.13 (Apr. 2023),
pp. 15098–15139. issn: 1573-0484. doi: 10.1007/s11227-023-05233-z. url:
http://dx.doi.org/10.1007/s11227-023-05233-z.

[9] Leo Ducas et al. CRYSTALS – Dilithium: Digital Signatures from Module
Lattices. Cryptology ePrint Archive, Paper 2017/633. https://eprint.iacr.
org/2017/633. 2017. url: https://eprint.iacr.org/2017/633.

[10] Claudia Eckert. It-Sicherheit. de. 10th ed. de Gruyter Studium. de Gruyter,
Aug. 2018.

60

https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://api.semanticscholar.org/CorpusID:785423
https://api.semanticscholar.org/CorpusID:785423
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://doi.org/10.1145/2976749.2978425
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/344
https://doi.org/10.1007/s11227-023-05233-z
http://dx.doi.org/10.1007/s11227-023-05233-z
https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2017/633

Bibliography

[11] T. Elgamal. “A public key cryptosystem and a signature scheme based on dis-
crete logarithms.” In: IEEE Transactions on Information Theory 31.4 (1985),
pp. 469–472. doi: 10.1109/TIT.1985.1057074.

[12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. Cryptology ePrint Archive, Paper 2012/144. https://epri
nt.iacr.org/2012/144. 2012. url: https://eprint.iacr.org/2012/144.

[13] Craig Gentry. “A fully homomorphic encryption scheme.” In: 2009. url: htt
ps://api.semanticscholar.org/CorpusID:53903759.

[14] Google Quantum AI — quantumai.google. https://quantumai.google. [Ac-
cessed 21-09-2024].

[15] Kimmo Halunen et al. “A Taxonomy of Metrics for Cryptographic Systems.”
English. In: Thirteenth International Conference on Emerging Security Infor-
mation, Systems and Technologies, SECURWARE 2019, SECURWARE 2019
; Conference date: 27-10-2019 Through 31-10-2019. 2019. url: https://www.
iaria.org/conferences2019/SECURWARE19.html.

[16] IBM Quantum Computing — ibm.com. https://www.ibm.com/quantum.
[Accessed 21-09-2024].

[17] Arpan Jati et al. “A Configurable CRYSTALS-Kyber Hardware Implementa-
tion with Side-Channel Protection.” In: ACM Trans. Embed. Comput. Syst.
23.2 (Mar. 2024). issn: 1539-9087. doi: 10 . 1145 / 3587037. url: https :
//doi.org/10.1145/3587037.

[18] Tendayi Kamucheka et al. A Masked Pure-Hardware Implementation of Kyber
Cryptographic Algorithm. Cryptology ePrint Archive, Paper 2022/1547. http
s://eprint.iacr.org/2022/1547. 2022. url: https://eprint.iacr.org/
2022/1547.

[19] Adeline Langlois and Damien Stehle. Worst-Case to Average-Case Reductions
for Module Lattices. Cryptology ePrint Archive, Paper 2012/090. https://
eprint.iacr.org/2012/090. 2012. url: https://eprint.iacr.org/2012/
090.

[20] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly
Multiparty Computation on the Cloud via Multikey Fully Homomorphic En-
cryption. Cryptology ePrint Archive, Paper 2013/094. 2013. url: https://
eprint.iacr.org/2013/094.

[21] Wen-jie Lu et al. “PEGASUS: Bridging Polynomial and Non-polynomial Eval-
uations in Homomorphic Encryption.” In: 2021 IEEE Symposium on Security
and Privacy (SP). 2021, pp. 1057–1073. doi: 10.1109/SP40001.2021.00043.

[22] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors Over Rings. Cryptology ePrint Archive, Paper 2012/230.
https://eprint.iacr.org/2012/230. 2012. url: https://eprint.iacr.
org/2012/230.

61

https://doi.org/10.1109/TIT.1985.1057074
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://api.semanticscholar.org/CorpusID:53903759
https://api.semanticscholar.org/CorpusID:53903759
https://quantumai.google
https://www.iaria.org/conferences2019/SECURWARE19.html
https://www.iaria.org/conferences2019/SECURWARE19.html
https://www.ibm.com/quantum
https://doi.org/10.1145/3587037
https://doi.org/10.1145/3587037
https://doi.org/10.1145/3587037
https://eprint.iacr.org/2022/1547
https://eprint.iacr.org/2022/1547
https://eprint.iacr.org/2022/1547
https://eprint.iacr.org/2022/1547
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2013/094
https://eprint.iacr.org/2013/094
https://doi.org/10.1109/SP40001.2021.00043
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230

Bibliography

[23] Chiara Marcolla et al. Survey on Fully Homomorphic Encryption, Theory, and
Applications. Cryptology ePrint Archive, Paper 2022/1602. https://eprint.
iacr.org/2022/1602. 2022. doi: 10.1109/JPROC.2022.3205665. url:
https://eprint.iacr.org/2022/1602.

[24] Anisha Mukherjee et al. ModHE: Modular Homomorphic Encryption Using
Module Lattices: Potentials and Limitations. Cryptology ePrint Archive, Paper
2023/895. https://eprint.iacr.org/2023/895. 2023. url: https://
eprint.iacr.org/2023/895.

[25] NIST Announces First Four Quantum-Resistant Cryptographic Algorithms.
July 2022. url: https://www.nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms
(visited on 01/03/2024).

[26] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes.” In: Advances in Cryptology - EUROCRYPT ’99, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques.
Vol. 1592. Lecture Notes in Computer Science. Springer, 1999, pp. 223–238.
doi: 10.1007/3-540-48910-X_16.

[27] Daniel Plaumann. Algebra. Berlin, Heidelberg: Springer Berlin Heidelberg,
2023.

[28] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography.” In: Symposium on the Theory of Computing. 2005. url: https:
//api.semanticscholar.org/CorpusID:53223958.

[29] R L Rivest, L Adleman, and M L Dertouzos. “On Data Banks and Privacy
Homomorphisms.” In: (1978).

[30] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital sig-
natures and public-key cryptosystems.” In: Commun. ACM 21.2 (Feb. 1978),
pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url: https:
//doi.org/10.1145/359340.359342.

[31] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring.” In: Proceedings 35th Annual Symposium on Foundations of Com-
puter Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[32] Vikram Singh. A Practical Key Exchange for the Internet using Lattice Cryp-
tography. Cryptology ePrint Archive, Paper 2015/138. https : / / eprint .
iacr.org/2015/138. 2015. url: https://eprint.iacr.org/2015/138.

62

https://eprint.iacr.org/2022/1602
https://eprint.iacr.org/2022/1602
https://doi.org/10.1109/JPROC.2022.3205665
https://eprint.iacr.org/2022/1602
https://eprint.iacr.org/2023/895
https://eprint.iacr.org/2023/895
https://eprint.iacr.org/2023/895
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://doi.org/10.1007/3-540-48910-X_16
https://api.semanticscholar.org/CorpusID:53223958
https://api.semanticscholar.org/CorpusID:53223958
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/SFCS.1994.365700
https://eprint.iacr.org/2015/138
https://eprint.iacr.org/2015/138
https://eprint.iacr.org/2015/138

List of Figures

List of Figures

1 Span of an Lattice . 8

2 Output Variable Factors by Scheme 41
3 Performance of the HE algorithms by n and d 45
4 Performance of the HE algorithms by qb and pf 48
5 Additive Error Development . 51
6 Multiplicative Error Development . 53

List of Tables

1 LWE variables shape comparison . 23
2 Variable size comparison of different LWE based encryption schemes . 24

3 Comparison of the three different types of homomorphic encryption . 28

4 LWE output variable size in bits based on n, d, qb and ` 40
5 Theoretical LWE HE output variable sizes 44
6 M-LWE and R-LWE Performance in seconds, based on variables

for the regular/recommended security level of published encryption
schemes . 49

7 M-LWE and R-LWE computation depth comparison 54

63

List of Algorithms

List of Algorithms

1 Sample LWE: KeyGen . 19
2 Sample LWE: Encryption . 20
3 Sample LWE: Decryption . 20

4 R-LWE: Addition . 29
5 R-LWE: rlk Generation . 30
6 R-LWE: Multiplication . 31
7 M-LWE: Addition . 32
8 M-LWE: rlk Generation for a single si 35
9 M-LWE: Multiplication . 36
10 M-LWE: KeyGen . 36

64

Anlage A. Example Calculations

A Example Calculations

A.1 Example Multidimensional Ring Calculation

Consider the ring R = Z5[x]/(x
3 + 1) and

f(x) =

[
1 + 2x+ 3x2 2 + 3x+ 4x2

3 + 4x+ x2 1 + 3x+ 4x2

]
∈ R2×2

g(x) =

[
1 + x+ x2

2 + 2x+ 2x2

]
∈ R2

f(x) · g(x) =
[
1 + 2x+ 3x2 2 + 3x+ 4x2

3 + 4x+ x2 1 + 3x+ 4x2

]
·
[

1 + x+ x2

2 + 2x+ 2x2

]
mod 5

=

1 −3 −22 1 −3
3 2 1

 2 −4 −33 2 −4
4 3 2

3 −1 −44 3 −1
1 4 3

 1 −4 −33 1 −4
4 3 1

 ·

11
1

22
2

 mod 5

=

1 −3 −2 2 −4 −3
2 1 −3 3 2 −4
3 2 1 4 3 2
3 −1 −4 1 −4 −3
4 3 −1 3 1 −4
1 4 3 4 3 1

 ·

1
1
1
2
2
2

 mod 5

=

−14
2
24
−14
6
24

 mod 5 =

1
2
4
1
1
4

 =

12
4

11
4

=

[
1 + 2x+ 4x2

1 + 1x+ 4x2

]

65

Anlage A. Example Calculations

A.2 Example encryption with Plain-LWE

The following calculations show the working of the Plain-LWE encryption for the
algorithms 1 to 3. The ring used for this calculations is defined as R = Z100 and
n = 2 for the matrix dimension. Starting first with the key generation:

s =

[
1
2

]
A =

[
56 77
29 59

]
e =

[
99
1

]
b = As + e

=

[
56 77
29 59

]
·
[
1
2

]
+

[
99
1

]
= 1 ·

[
56
29

]
+ 2 ·

[
77
59

]
+

[
99
1

]
=

[
309
148

]
100

=

[
9
48

]
sk = s =

[
1
2

]
pk = (A,b) =

([
56 77
29 59

]
,

[
9
48

])

With the secret and public key generated, the next step is to encrypt the message
m = 1 with the public key pk

66

Anlage A. Example Calculations

r =

[
0
1

]
e1 =

[
2
0

]
e2 = 99

u = AT · r + e1

=

[
56 77
29 59

]T
·
[
0
1

]
+

[
2
0

]
=

[
56 29
77 59

]
·
[
0
1

]
+

[
2
0

]
= 0 ·

[
56
77

]
+ 1 ·

[
29
59

]
+

[
2
0

]
=

[
31
61

]
100

=

[
31
61

]

v = bT · r + e2 + (m ∗ bq/2c)

=

[
9
48

]T
·
[
0
1

]
+ 99 + 1 · b100/2c

=
[
9 48

]
·
[
0
1

]
+ 99 + 50

= 9 · 0 + 48 · 1 + 99 + 50

= 197100

= 97

ct = (u, v) =
([

31
61

]
, 97

)

67

Anlage A. Example Calculations

Now the cipher text ct can be decrypted again, using the secret key sk:

m =

⌊
1

bq/2c
·
[
v − sT · u

]
q

⌉
2

=

⌊
1

b100/2c
·

[
97−

[
1
2

]T
·
[
31
61

]]
100

⌉
2

=

⌊
1

50
·
[
97−

[
1 2

]
·
[
31
61

]]
100

⌉
2

=

⌊
1

50
· [97− (31 · 1 + 61 · 2)]100

⌉
2

=

⌊
1

50
· [−56]100

⌉
2

=

⌊
1

50
· 44
⌉
2

=

⌊
44

50

⌉
2

= b0.88e2

= 1

A.3 Example encryption with R-LWE

The following calculations show the working of the Ring LWE encryption for the
algorithms 1 to 3. The ring used for this calculations is defined as R = Z[x]100/(x3+
1). Starting first with the key generation:

s = 1 + 0x+ 1x2

A = 28 + 56x+ 1x2

e = 1 +−1x+ 2x2 = 1 + 99x+ 2x2

b = As+ e

= (28 + 56x+ 1x2) · (1 + 0x+ 1x2) + (1 + 99x+ 2x2)

= (28 + 28x2) + (56x+ 56x3) + (1x2 + 1x4) + (1 + 99x+ 2x2)

= 29 + 155x+ 31x2 + 56x3 + 1x4 mod x3 + 1

= 29 + 155x+ 31x2 − 56− 1x

= −27 + 154x+ 31x2 mod 100

= 73 + 54x+ 31x2

sk = s = 1 + 0x+ 1x2

pk = (A, b) = (28 + 56x+ 1x2, 73 + 54x+ 31x2)

68

Anlage A. Example Calculations

Encryption of message m = (1, 1, 0):

r = 0 + 1 + 1x2

e1 = 98 + 0x+ 98x2

e2 = 1 + 0x+ 0x2

m = (1, 1, 0) = 1 + 1x+ 0x2

u = A · r + e1

= (28 + 56x+ 1x2) · (0 + 1 + 1x2) + (98 + 0x+ 98x2)

= (28x+ 84x2 + 57x3 + x4) + (98 + 0x+ 98x2)

= 98 + 28x+ 182x2 + 57x3 + x4 mod (x3 + 1)

= 98 + 28x+ 182x2 − 57− x

= 41 + 27x+ 182x2 mod 100

= 41 + 27x+ 82x2

v = b · r + e2 + (m · bq/2c)
= (73 + 54x+ 31x2) · (0 + 1 + 1x2) + (1 + 0x+ 0x2) + (1 + 1x+ 0x2) · (100/2)
= (73x+ 127x2 + 85x3 + 31x4) + (1 + 0x+ 0x2) + (50 + 50x+ 0x2)

= 51 + 123x+ 127x2 + 85x3 + 31x4 mod (x3 + 1)

= 51 + 123x+ 1272 − 85− 31x

= −34 + 92x+ 127x2 mod 100

= 66 + 92x+ 27x2

ct = (u, v) = (41 + 27x+ 82x2, 66 + 92x+ 27x2)

69

Anlage A. Example Calculations

Decryption:

m =

⌊
1

bq/2c
·
[
v − sT · u

]
q

⌉
2

=

⌊
1

b100/2c
·
[
(66 + 92x+ 27x2)− (1 + 0x+ 1x2) · (41 + 27x+ 82x2)

]
100

⌉
2

=

⌊
1

50
·
[
(66 + 92x+ 27x2)− (41 + 27x+ 123x2 + 27x3 + 82x4)

]
100

⌉
2

=

⌊
1

50
·
[
25 + 65x− 96x2 − 27x3 − 82x4

]
100

⌉
2

mod (x3 + 1)

=

⌊
1

50
·
[
25 + 65x− 96x2 + 27 + 82x

]
100

⌉
2

=

⌊
1

50
· (52 + 147x− 96x2)

⌉
2

mod 100

=

⌊
1

50
· (52 + 47x+ 4x2)

⌉
2

=
⌊
1.04 + 0.64x+ 0.08x2

⌉
2

= 1 + 1x+ 0x2

= (1, 1, 0)

A.4 Example encryption with M-LWE

The following calculations show the working of the Module LWE encryption for the
algorithms 1 to 3. The ring used for this calculations is defined as R = Z[x]100/(x3+
1) and the matrix dimension n = 2.

70

Anlage A. Example Calculations

Starting first with the key generation:

s =

[
2 + 1x+ 0x2

3 + 1x+ 1x2

]
A =

[
27 + 2x+ 43x2 30 + 10x+ 35x2

91 + 34x+ 50x2 82 + 21x+ 94x2

]
e =

[
1 + 1x+ 2x2

−3 + 3x+ 3x2 = 97 + 3x+ 3x2

]
b = As + e

=

[
27 + 2x+ 43x2 30 + 10x+ 35x2

91 + 34x+ 50x2 82 + 21x+ 94x2

]
·
[
2 + 1x+ 0x2

3 + 1x+ 1x2

]
+

[
1 + 1x+ 2x2

97 + 3x+ 3x2

]
=

[
56 + 56x+ 233x2

263 + 210x+ 519x2

]
+

[
1 + 1x+ 2x2

97 + 3x+ 3x2

]
=

[
57 + 57x+ 235x2

360 + 213x+ 522x2

]
100

=

[
57 + 57x+ 35x2

60 + 13x+ 22x2

]
sk = s =

[
2 + 1x+ 0x2

3 + 1x+ 1x2

]
pk = (A,b) =

([
27 + 2x+ 43x2 30 + 10x+ 35x2

91 + 34x+ 50x2 82 + 21x+ 94x2

]
,

[
57 + 57x+ 35x2

60 + 13x+ 22x2

])

71

Anlage A. Example Calculations

Encryption of message m = (1, 1, 0):

r =

[
1 + 1x+ 1x2

1 + 0x+ 0x2

]
e1 =

[
2 + 98x+ 3x2

97 + 3x+ 3x2

]
e2 = 2 + 97x+ 97x2

m = (1, 1, 0) = 1 + 1x+ 0x2

u = AT · r + e1

=

[
27 + 2x+ 43x2 30 + 10x+ 35x2

91 + 34x+ 50x2 82 + 21x+ 94x2

]T
·
[
1 + 1x+ 1x2

1 + 0x+ 0x2

]
+

[
2 + 98x+ 3x2

97 + 3x+ 3x2

]
=

[
27 + 2x+ 43x2 91 + 34x+ 50x2

30 + 10x+ 35x2 82 + 21x+ 94x2

]
·
[
1 + 1x+ 1x2

1 + 0x+ 0x2

]
+

[
2 + 98x+ 3x2

97 + 3x+ 3x2

]
=

[
73 + 20x+ 122x2

67 + 26x+ 169x2

]
+

[
2 + 98x+ 3x2

97 + 3x+ 3x2

]
=

[
75 + 118x+ 125x2

164 + 23x+ 172x2

]
100

=

[
75 + 18x+ 25x2

64 + 23x+ 72x2

]

v = bT · r + e2 + (m · bq/2c)

=

[
57 + 57x+ 35x2

60 + 13x+ 22x2

]T
·
[
1 + 1x+ 1x2

1 + 0x+ 0x2

]
+ (2 + 97x+ 97x2) + (1 + 1x+ 0x2) · b100/2c

= (25 + 92x+ 171x2) + (2 + 97x+ 97x2) + (50 + 50x+ 0x2)

= (77 + 239x+ 268x2)100

= 77 + 39x+ 68x2

ct = (u, v) =
([

75 + 18x+ 25x2

64 + 23x+ 72x2

]
, 77 + 39x+ 68x2

)

72

Anlage A. Example Calculations

Decryption:

m =

⌊
1

bq/2c
·
[
v − sT · u

]
q

⌉
2

=

⌊
1

b100/2c
·

[
77 + 39x+ 68x2 −

[
2 + 1x+ 0x2

3 + 1x+ 1x2

]T
·
[
75 + 18x+ 25x2

64 + 23x+ 72x2

]]
100

⌉
2

=

⌊
1

50
·
[
77 + 39x+ 68x2 − (216 + 190x+ 377x2)

]
100

⌉
2

=

⌊
1

50
·
[
−139− 151x− 309x2

]
100

⌉
2

=

⌊
1

50
·
[
61 + 49x+ 91x2

]
100

⌉
2

=

⌊
61

50
+

49

50
x+

91

50
x2

⌉
2

=
⌊
1.22 + 0.98x+ 1.82x2

⌉
2

=
⌊
1 + 1x+ 2x2

⌉
2
= 1 + 1x+ 0x2

= (1, 1, 0)

73

	Title Page
	Abstract
	Inhaltsverzeichnis
	Introduction
	Mathematical Background
	Preliminaries
	Lattice
	Integer & Polynomial Rings with modulus
	Polynomial Ring arithmetic using Vectors & Matrices
	Multidimensional Rings

	Learning with Errors
	The Learning with Errors Problem
	LWE based encryption scheme
	Transforming Plain-LWE to R-LWE and M-LWE
	Criteria for comparing LWE-based encryption schemes

	Homomorphic Encryption
	Introduction to Homomorphic Encryption
	Creating an Somewhat Homomorphic Encryption scheme
	Generalizing from R-LWE to M-LWE
	Criteria for comparing LWE-based homomorphic encryption schemes

	Comparison of the SWHE scheme for Plain-, R- and M-LWE
	Size cost comparison
	Time cost comparison
	Comparison of the additive and multiplicative depth

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Appendix Example Calculations
	Example Multidimensional Ring Calculation
	Example encryption with Plain-LWE
	Example encryption with R-LWE
	Example encryption with M-LWE

