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Purpose of This Thesis

The purpose of this master’s thesis is an introduction to multi-factor authentication,
as well as to the conventional methods of authentication (knowledge, possession,
biometrics). This introduction includes technical functionality, web usability, and
potential security threats and vulnerabilities.

Further, this thesis will investigate whether the Web Authentication API is suit-
able as an alternative or possible supplement to existing multi-factor authentication
methods. The question has to be answered to what extent the Web Authentication
API can increase security and user comfort. An evaluation of the security of the Web
Authentication API in comparison with other multi-factor authentication solutions
plays a crucial role in this thesis.



Abstract

Internet users are at constant risk, given that data breaches happen nearly daily.
When a breached password is re-used, it renders their whole digital identity in dan-
ger. To counter these threats, the user can deploy additional security measures, e.g.,
multi-factor authentication. This master’s thesis introduces and compares the multi-
factor authentication solutions, one-time passwords, smart cards, security keys, and
the Universal Second Factor protocol with a focus on their security. Further, the
Web Authentication API is explained and compared with the other multi-factor au-
thentication solutions. The outcome of this thesis is that multi-factor authentication
is subject to phishing attacks. It can be made phishing resistant, but it requires a
change of the transportation medium or the usage of other authentication methods.
Also, the Web Authentication API has the potential to replace passwords. However,
it is not yet usable enough for the end consumer.

Keywords— authentication, multi-factor authentication, mfa, two-factor authenti-
cation, 2fa, fido, web authentication api, webauth, webauthn, web-authentication

Kurzfassung

Internetnutzer sind einem ständigen Risiko ausgesetzt, da Sicherheitsbrüche fast
täglich auftreten. Wenn ein gehacktes Passwort wiederverwendet wird, stellt dies
eine Gefahr für die gesamte digitale Identität des Nutzers dar. Um diesen Bedrohun-
gen entgegenzuwirken, kann der Benutzer zusätzliche Sicherheitsmaßnahmen, z. B.
die Multi-Faktor Authentifizierung, einsetzen. Diese Masterarbeit stellt die Multi-
Faktor Authentifizierungen Einmalpasswörter, Chipkarten, Sicherheitsschlüssel und
das Universal Second Factor Protokoll mit Fokus auf deren Sicherheit vor und ver-
gleicht diese. Weiterhin wird die Web Authentication API erläutert und mit den
o. g. Multi-Faktor-Authentifizierungen verglichen. Das Ergebnis dieser Arbeit ist,
dass die Multi-Faktor Authentifizierung trotzdem Phishing-Angriffen ausgesetzt ist.
Es erfordert andere Transportmechanismen oder Verfahren, um Resistenz gegenüber
Phishing zu erreichen. Darüber hinaus hat die Web Authentication API das Poten-
zial, Passwörter zu ersetzen, ist aber für den Endverbraucher aktuell noch nicht
ausreichend nutzbar.

Schlüsselwörter— authentifizierung, multi-faktor authentifizierung, mfa, zwei-
faktor authentifizierung, 2fa, fido, web authentication api, webauth, webauthn, web-
authentication
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Chapter 1. Introduction

1 Introduction

1.1 Problem Statement and Motivation

»Usernames and passwords are an idea that
came out of 1970s mainframe architectures.
They were not built for 2016.«1

Alex Stamos

Passwords in the way they are currently used, are not suited for the twenty-first-
century, as Alex Stamos, the former Chief Security Officer (CSO) of Facebook and
Yahoo!, stated. The secure handling of passwords is a problem for many users.
Passwords are re-used between different websites and often shared across private and
work environments. This renders the (private) user data, but also business secrets
at high risk. If confidential business data is leaked or obtained by a competitor, it
may have severe consequences for the respective company. These consequences have
the potential to force the company into a shutdown, such as the bitcoin marketplace
Mt. Gox after a hack that resulted in bitcoin loss.2

To make things worse, very few people are using multi-factor authentication (MFA)
and even fewer password managers in 2019. The majority of the users are either
remembering their passwords or writing them down on a piece of paper — in plain-
text.3

At the same time, the recorded amount of cybercrime cases is still increasing, and,
for example, phishing remains a constant threat. While MFA can protect against
threats such as brute-force attacks or stolen credentials, some MFA solutions are
still affected and vulnerable to phishing attacks. Besides that, short message service
(SMS) traffic is not considered secure anymore, yet a lot of MFA solutions use

1Col16.
2See Ros18, p. 43.
3See Kes18; See Fri19.
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Chapter 1. Introduction

it. Nevertheless, the majority of the users are not using MFA at all, even if weak
solutions can protect against automated attacks.4

To counter these negative trends, new application programming interfaces (APIs)
are emerging, for example, the Web Authentication API. It is a standardized API
supported in web browsers such as Chrome, Firefox, or Edge. The Web Authenti-
cation API allows a secure registration, login, and two-factor authentication (2FA)
— all without the generation, storage, and remembering of passwords by utiliz-
ing asymmetric cryptography. The private keys are stored, e.g., on external devices
such as Universal Serial Bus (USB) thumb drives, but can be stored on built-in hard-
ware, too. These are, for example, protected by a fingerprint sensor or dedicated
chip designed for secure operations.5

1.2 Goals of This Thesis

The goals of this thesis are an introduction to MFA and the different authentication
factors such as »knowledge, possession, and biometrics«. This introduction includes
the technical functionality, usability in web projects and web browsers, and their
security threats. Further, this thesis shall introduce the Web Authentication API.
Those methods of authentication need to be mapped to actual implementations of
authentication such as passwords, security keys, and fingerprint sensors, that need
to be evaluated security-wise, too.

This thesis illustrates the Web Authentication API and its origin and explains it
technically in more depth. In this connection, the question has to be answered if
the Web Authentication API can increase security, user comfort, and usability. In
this regard, the potential security threats or vulnerabilities that Web Authentication
API faces are discussed as well.

Finally, the thesis should answer the question if the Web Authentication API is ready
to be used yet and whether it can replace passwords and existing MFA solutions, or
if it can be used in conjunction with passwords. Besides that, questions are taken
into account and answered, such as:

• What are the risks of not using MFA?

• Why are weak passwords and password re-usage such a big issue?

4See dim19; See Bun18, pp. 6–7; See Dot19, p. 58; See Doe+19, p. 2.
5See Bal+19, Chapter 1.
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Chapter 1. Introduction

• Is there protection against the weakest link, often being humans?

• If a user employs MFA, are there any threats, too?

• Are the architecture and algorithms of the used MFA solutions secure enough
for usage in web projects and insecure connections?

• Is the Web Authentication API suitable, easy to use, and understandable for
end-users?

1.3 Target Audience

The target audience of this thesis are technically experienced readers that have a
good understanding and interest in data security and privacy. Additionally, the
reader should have a basic knowledge about the functionality and mathematics
behind algorithms such as Rivest–Shamir–Adleman (RSA), elliptic-curve cryptog-
raphy (ECC), or symmetric and asymmetric key exchange (e.g., Diffie–Hellman key
exchange). Moreover, the reader needs to be familiar with the underlying concepts
and techniques of MFA.

Furthermore, the thesis is tailored to interested (web) developers. On the one hand,
it shall introduce a new standardized Web API to them in detail. On the other hand,
the thesis helps to understand the pros and cons of alternative registration, login,
and MFA solutions using asymmetric cryptography. Likewise, it should highlight the
necessary facts to decide whether the Web Authentication API suits their needs.

1.4 Delimitation of This Thesis

Existing formally verified and proven algorithms and concepts, as long as not re-
quired for the understanding of this thesis, are not explained in detail. It is not
the goal of this thesis to perform complete cryptanalysis of existing MFA solutions,
nor of the Web Authentication API. Instead, the thesis takes other factors, such as
usability for the user, technical feasibility, and web browser support into account.
Different, but adjacent, technologies such as OAuth (2.0), OpenID Connect, or the
single sign-on (SSO) neither are a focus of this thesis. Additionally, the topic of
authorization is not taken into account and is not of concern for this thesis.

3



Chapter 1. Introduction

1.5 Approach and Methodology

Initially, Chapter 2 introduces the reader to the basics of authentication. After
that, in the following chapters, the areas single-factor authentication and MFA are
explained. For example, their technical functionality is described, followed by an
analysis regarding their security and protection against attacks such as phishing or
man in the middle (MITM) attacks.

Hereupon, the Web Authentication API is introduced in Chapter 6 and described
in detail. Technical functionality is a crucial aspect of this chapter. Additionally,
it explains against which attacks the Web Authentication API can offer protection.
However, it is also asserted which security threats exist, too. As various proof of
concepts (PoCs), libraries and full implementations in different programming lan-
guages exist, where suitable only example source code listings are used to highlight
these analyses.

Section 6.5 compares the Web Authentication API with existing MFA solutions.
Therefore, the section reviews if the Web Authentication API can be used in con-
junction or as a replacement for MFA.

Concluding, follows an evaluation based on the gained insights from the previous
chapters with a summing-up, a conclusion, and outlook for further research and
studies.
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Chapter 2. Basics of Authentication

2 Basics of Authentication

2.1 Methods of Authentication

There are multiple different methods or forms, respectively, that can be used to
authenticate a user against someone or something. Traditionally only knowledge,
possession, and trait are considered the different forms of authentication. However,
other sources also introduce or take new kinds into account, such as location- or
time-based authentication. Therefore, this thesis accounts for them, too, and de-
scribes the different forms in the following sections briefly. A detailed analysis of
the security, especially potential threats and vulnerabilities follows in Chapter 3.6

2.1.1 Knowledge

The most used method of authentication is knowledge, i.e., »something the user
knows«. Commonly used in information technology (IT) are passwords. Other forms
of knowledge are, for example, personal identification numbers (PINs), passphrases,
secrets, recovery questions, or one-time passwords (OTPs). The PIN is an example
of knowledge, used in, e.g., banking (automated teller machines (ATMs), credit
cards) or telephony (subscriber identity module (SIM)). The security relies on the
fact that the knowledge is considered a secret that only the user knows. When
compromised, it is relatively easy to replace the knowledge with a different secret
the user knows. An example of an unintentional side effect in case of password re-use
is that the user needs to replace the used knowledge everywhere.7

6See TW75, p. 299; See BB17, p. 140; See And08, p. 47; See ZKM12; See DRN17, p. 191.
7See Eck14, p. 467.
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User visits
website

User enters
password

Password
transformation

Retrieval of
stored password

Comparison
of both passwords (hashes)

based on equality

Password is not equal
and access denied

Password is equal
and access granted

User
database

Figure 2.1: Exemplary, but simplified, authentication by knowledge flow8

Figure 2.1 shows a simplified knowledge-based authentication flow. In this example,
the user first visits a website and enters their password in the corresponding form
fields. When the user submits the form, the transferred password is often trans-
formed on the server-side, e.g., hashed and salted. If the database contains an entry
for the user, then the stored (hash of) the password is retrieved and compared to
the entered one. Only if the hashes are identical, the login succeeds. Otherwise,
it fails. The »access denied/cancel« and »checkmark« symbols are chosen since it
cannot be verified by whom the authentication is made. It could be a genuine user
or an imposter that gained access to the knowledge of the attacked user, in this case,
their password.

2.1.2 Possession

Another form of authentication is the possession, i.e., »something the user (phys-
ically) has«. The most basic example is a key for a lock. Other forms are, for
example, a bank or ID card that can use techniques such as radio-frequency identifi-
cation (RFID), an onboard chip or magnetic stripes to store the information. In IT,
security tokens are often used. They can be hardware tokens (such as a YubiKey, an
RSA SecurID, or a smart card) or software tokens (for instance, a smartphone ap-
plication). They can either be disconnected, connected (e.g., via USB or as a smart
card) or contactless (for example, via near-field communication (NFC), Bluetooth

8Source: diagram by author.

6



Chapter 2. Basics of Authentication

Low Energy (BLE), or RFID). Sometimes these tokens contain a display that can
show further information.9

User uses
computer

User inserts
smart card

Data
reading Retrieval of

stored data

Comparison
of data

based on equality

Data is not equal
and access denied

Data is equal
and access granted

Database

Figure 2.2: Exemplary, but simplified, authentication by possession flow10

Figure 2.2 shows an example of a possession-based authentication flow with a smart
card. First, the user inserts the given smart card into their computer. The data
is read subsequently. Contemporaneous, the application or system reads the stored
database entry and compares the data to the one stored on the smart card. If
the data is equal or matches, and the user is authorized, then the authentication
succeeds. Again, any user can log on as long as they have the smart card.

2.1.3 Biometrics

Besides the knowledge and possession factors, another one is biometrics. This factor
is classified as »something the user is« and commonly includes the fingerprint, facial,
or iris scan. In theory, many other characteristics, e.g., the gait, the ear, DNA, or
even the human odor, can be a biometric factor.11

These intrinsic factors are sometimes referred to as traits or inherence, too.12

While it seems natural to authenticate a person with a biometric factor, it also
comes with a couple of challenges. Both, the false rejection rate (FRR), i.e., the
system rejects a user even though it is a legitimate user, and the false acceptance
rate (FAR), i.e., an imposter is granted access, needs to be accounted for the usage.
Compared to knowledge-based and possession-based authentication, the enrollment

9See Tod07, p. 24; See DLE19; See May17, pp. 8–11.
10Source: diagram by author
11See JRN11, pp. 30–34.
12See DRN17, p. 186.
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of the biometrics and the continuous update of the sample is more complicated and
expensive.13

On the other hand, it is more complex to steal, share, or copy this factor than the
others — but it is also nearly impossible to replace compromised biometrics. The
usability varies because of the quality of the used biometrics module, the chosen
biometrics itself, and the availability of the biometrics.

Sensor
interaction

Biometric template
extraction

Template
transformation

Extraction of
stored template

Comparison
of both templates, decision
based on threshold value

Imposter detected
and access denied

User identified
and access granted

Template
database

Figure 2.3: Exemplary, but simplified, authentication by biometrics flow14

Figure 2.3 shows an exemplary authentication flow using biometrics, in this case with
a fingerprint. First, the user interacts with the sensor which reads the fingerprint
and extracts the biometric template. Generally, the system or reader transforms
the template into a more comparable format. For instance, fingerprints are scanned
for minutiae and their direction. Simultaneously, the system retrieves the stored
fingerprint or searches for it. The system now compares the stored probe to the
fresh one. A threshold value determines how much difference is tolerable. This
comparison result finally decides if the authentication attempt can proceed or if it
has to be aborted. If the latter occurs, the system denies access to the user. If the
authentication succeeds, the stored template can be updated in the database, as
denoted by the dotted gray arrow in the figure.

13See JRN11, pp. 18–24; See Tod07, pp. 34–37.
14Source: diagram by author, based on JRN11, p. 11.
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Chapter 2. Basics of Authentication

2.1.4 Further Methods of Authentication

While the preceding authentication forms are considered a standard in the literature,
other forms exist, too. Those include, for example, the current position of the user.
The location-based approach grants or denies access based on the current position.
The location can either be physical (e.g., via Global Positioning System (GPS)) or
digital, such as an IP address.15

Another method of authentication is time-based authentication. A typical example
is time-limited access to a banking safe, which can only be opened at specific times
of the day. A time lock secures it. In IT, this form of authentication helps to protect
against, for example, phishing attacks from abroad. The access is granted or denied
based on the time and usual time routines where, for instance, a user typically logs
on to a system.16

Further methods of authentication are, for instance, social authentication, also re-
ferred to as »someone the user knows«. For example, Facebook uses this method
to ensure that the authentication attempt is genuine by asking the user to identify
a set of their friends. Of course, social authentication works in other scenarios, es-
pecially offline use cases, too. Besides these methods, »something the user does« is
another form of authentication. Examples range from keystrokes to online shopping
behavior.17

2.2 Processes of Authentication

The process of authentication can be performed in three different manners that the
following subsections explain. These are namely:

1. Active authentication, where a user has to initiate the process.

2. Passive authentication, where the user does not need to interact with the
system.

3. Continuous authentication, where a system continually monitors and au-
thenticates the user.

15See ZKM12; See Bis18, Chapter 13.9.
16See DRN17, p. 191.
17See Bra+06; See Sho14, pp. 278–279; See Shi+11; See Oud16.
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Chapter 2. Basics of Authentication

A combination of active and passive authentication is also possible. For example, the
biometric passport (»ePassport«) contains both active authentication and passive
authentication with the help of an integrated RFID chip.18

2.2.1 Active Authentication

The most common process of authentication is active authentication. In this process
of authentication, the user has to initiate the authentication. Instances for this pro-
cess can be opening a website and entering the password in the form fields, pressing
a button or placing the fingerprint on the corresponding sensor. The biometric pass-
port authenticates against a reading device with an asymmetric challenge-response
protocol. This security measure helps to identify cloned passports.19

2.2.2 Passive Authentication

In contrast to the active authentication process, the passive authentication process
authenticates the user without the need to take action on their part. Use cases of
passive authentication are, for example, RFID chips that continuously send a signal
in a short-range and can open a door when the user approaches it. Further examples
can be the analysis of keystrokes or touch screen usage patterns. In comparison with
active authentication, this process is more low-friction. The biometric passport
provides a way for a reading device to calculate the integrity and authenticity of the
passport to improve the protection against forgery.20

2.2.3 Continuous Authentication

Further, the process of continuous authentication exists, too. In this case, the user
is continuously authenticated or monitored to ensure that it is still the initially
authenticated user who uses the system. Authentication must happen in a non-
intrusive way. Commonly used for continuous authentication are biometrics, such
as fingerprints, facial recognition, or keystroke patterns.21

Unfortunately, the term active authentication is often used to describe continuous
authentication, too. To avoid confusion, solely term continuous authentication is

18See Eck14, p. 545.
19See DZZ14, pp. 185–186; See Eck14, p. 545.
20See DZZ14, p. 186; See XZL14; See Eck14, p. 545.
21See DRN17, pp. 236–238; See Fri+17.
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used to refer to this process of authentication, while any mentions of active authen-
tication are a reference to the process described in subsection 2.2.1.

2.3 Attestation

A typical problem in authentication is the trustworthiness between two parties,
usually a server and a client. Assuring and proving that an entity is trustworthy is
called attestation. For example, the Trusted Platform Module (TPM) computing
uses attestation, also called »Remote Attestation«. Nevertheless, it is also important
in the context of the Universal Authentication Framework (UAF), Universal Second
Factor (U2F) protocol, and the Web Authentication API. An essential aspect is to
prove (»vouch for«) an entity while keeping the user and the user’s data private.
This form of attestation is called Direct Anonymous Attestation (DAA), which can
use ECC to achieve this goal, too.22

2.4 Challenge-Response Authentication

Challenge-response authentication is a particular method of authentication by knowl-
edge. Instead of transmitting the knowledge, the client answers challenges sent by
the server. This proves that the client knows the shared secret. Challenge-response
authentication supports both symmetric and asymmetric cryptosystems. A basic
symmetric approach is the following:

0. Requirement: The server and client both know the same secret key K.

1. The server generates a unique challenge c (e.g., a random number) and sends
it to the client.

2. The client computes the keyed hash respc = hash(c, K) and sends it back to
the server.

3. The server compares its computation of resps = hash(c, K) to the received
respc.

To achieve mutual authentication, the client can also send a unique challenge to the
server, which in turn generates the keyed hash and sends it back to the client for
verification. A typical challenge-response protocol is Fiat-Shamir.23

22See Fen+17; See May17, p. 501; See Cok+11, p. 4; See Cel+17, p. 100; See CPS10, p. 226.
23See Was17, Chapter 13.6; See Eck14, pp. 489–491.
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2.5 Zero-Knowledge Protocol

Zero-knowledge protocols or proofs are unique variants of the challenge-response
authentication. In this protocol, two participants want to prove the knowledge of a
secret without disclosing the secret or parts of it to the other or third-parties. The
verifying party asks the participant to solve a challenge that can only be answered
correctly by knowing the secret. The challenges are repeated multiple times to
decrease the chances of a correct guess by an attacker. An example implementation
is the Feige–Fiat–Shamir identification scheme. A more sophisticated variant is
the zero-knowledge password proof (ZKPP) which is an interactive zero-knowledge
proof. It is standardized in the Institute of Electrical and Electronics Engineers
(IEEE) standard IEEE 1363.2. The use of ZKPP protects against, e.g., guessing
and dictionary attacks.24

2.6 Wording Differences between Multi-Factor, Multi-Step,
Authentication, and Verification

Three different terms are used in the authentication context. Single-factor authen-
tication describes the authentication of a user with one of the introduced authen-
tication methods. Two-factor authentication (2FA) describes the process with two
distinct methods of authentication involved in the authentication process. Multi-
factor authentication (MFA) is an abstraction of this term that enables the usage
of 2-n different methods of authentication.25

Authorities such as the Federal Office for Information Security (BSI), the European
Union (EU), or the National Information Assurance Glossary also use the term
»strong authentication« as a synonym for MFA.26

The naming of the chosen authentication or verification methods by companies is
often confusing and difficult to understand. The terms used by companies vary
from two-factor authentication, often just calling it 2FA, to two-step-verification,
sometimes even written as 2-Step Verification or 2SV, too.27

One could argue that the different authentication factors can be reduced to a single
one, e.g., that an OTP is »something the user knows« since it relies on a secret that

24See Eck14, p. 492; See BKW14, Chapter 28.3.7; See FB17, pp. 769–770; See FFS88.
25See DRN17, pp. 186–188.
26See Nat18, p. 117; See Sic19, p. 11.
27See Sup19a; See Sup19b; See Pla; See Goob; See Mic19.
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could, in theory, be memorized, too, but practically is not memorable.
In this case, the term MFA or 2FA is technically incorrect, since it is instead a
multi-step authentication because the same factor is used multiple times. Also, it
has to be noted that using the same authentication factor multiple times is weaker
than using different authentication factors.28

The (user) verification, especially the verification of access permissions, is a part
of the authentication process. Because of this, for the remainder of this thesis, the
subtle differences between verification and authentication are not relevant, and the
term MFA is used throughout.

2.7 FIDO’s Universal Authentication Framework

2.7.1 FIDO Alliance

The Fast IDentity Online (FIDO) alliance is an open industry association founded
in July 2012 that launched publicly in February 2013. Companies such as PayPal,
Lenovo, and Infineon founded the FIDO alliance. Currently, the alliance has more
than 260 members, including, e.g., Google, Amazon, Yubico, Samsung, Microsoft,
VISA, or MasterCard. The goal of the FIDO alliance is to develop new authentica-
tion protocols and standards in order to enhance and simplify the user experience
of MFA and to reduce the supersaturated usage of passwords. The FIDO alliance
developed the specifications UAF, U2F, Client-to-Authenticator Protocol (CTAP),
and first draft of the Web Authentication API.29

Another goal of the FIDO alliance is user privacy. As all of their specifications
are based on public-key cryptography, this goal is easily achieved. Each key-pair is
unique for every registration the user performs and not shared with third-parties.
Because of the public-key cryptography, no link between the same user on different
websites exists. Further, a relying party (RP), i.e., web server, is only allowed to
access the public-key credentials of a user that are associated the RP. Besides, one
of the core principles is that biometric data never leaves the local authenticator and
that no action is performed without the users’ consent. Additionally, no authenti-
cator device is uniquely identifiable. They are only identifiable on a manufacturer
or production-batch level.30

28See Gri17, p. 117.
29See FIb; See Eck14, p. 583; See Sch19a, p. 17.
30See FI14, pp. 6–7.
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2.7.2 Universal Authentication Framework

The Universal Authentication Framework (UAF) is FIDO’s solution for a pass-
wordless experience and standardized in the International Telecommunication Union
(ITU) recommendation ITU-T X.1277. It uses local and native device authentica-
tion, such as biometrics, to authorize the user. UAF does not feature 2FA but is
instead designed as a direct replacement for the login with passwords. It is based on
public-key cryptography with the use of challenge-response authentication to prevent
replay attacks. The goal of the UAF is to provide a generic API that enables inter-
operability and unified user experience between different operating systems (OSes)
and clients.31

It features three key components, the UAF client, the UAF server, and the UAF
authenticators. Besides that, the alliance offers a centralized metadata service. The
communication between the client and the authenticator is performed via the UAF
Authenticator-Specific Module (ASM). It offers a standardized API for the client to
access and to detect the different authenticators. Each authenticator is identified
by the Authenticator Attestation ID (AAID), a unique model ID that comprises
the vendor and model ID. The FIDO alliance centrally assigns and manages the
vendor IDs. Further, at manufacturing a private attestation key is inserted into the
authenticator which can and will not change.32

Figure 2.4 on the next page shows the UAF architecture, where the user device is
responsible for the communication between the authenticator, ASM, FIDO client,
and the corresponding web browser or (mobile) app. The web browser is also called
the user agent. The RP, commonly being a web server, and the FIDO server are re-
sponsible for secure communication over the UAF protocol between the user device
and RP. Further duties of the RP are authenticator validation and user authentica-
tion. The metadata service updates the database of approved, genuine, and certified
authenticators that the FIDO server uses for authenticator validation. The protocol
defines four different use cases, which are explained in more detail below:33

1. Registration of the authenticator

2. User authentication

3. Transaction confirmation

31See SM18, p. 249; See DRN17, pp. 197–198; See ITU18a.
32See LJ15, p. 145; See LT17, p. 8.
33See LT17, p. 4.
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4. De-registration of the authenticator

Browser / App

FIDO client

FIDO
Authenticator

ASM

User Device Relying Party

FIDO metadata
service

FIDO server

Web server

U
pd

at
e

Figure 2.4: UAF architecture overview34

Registration

The registration process contains different steps. A FIDO server generates a pol-
icy object which contains allowed and disallowed authenticators. This data is sent
together with the server challenge, username, AppID, and FacetID to the client.
An AppID describes the origin of an RP, for example, »https://auth.timbrust.de«.
Since the created credentials are subject to the same-origin policy, other (sub-
)domains are not allowed to access the credentials. With the FacetIDs, a re-
lying party can specify further subdomains that are allowed to access the cre-
dential. An example of a valid FacetID is »https://admin.timbrust.de«, where
»https://auth.wings.de« is an invalid FacetID because the origin is different.35

34Source: diagram by author, based on Mac+17, p. 4.
35See Pan+17, pp. 131–132; See LT17, pp. 17–19; See Lin17a, pp. 3–4.
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The client checks that the given AppID matches the requested server and processes
the registration. In the first place, the final challenge parameter (FCP) is generated
by hashing the server challenge, AppID, FacetID, and Transport Layer Security
(TLS) data. Subsequently, the ASM computes the KHAccessToken, an access con-
trol mechanism to prevent unauthorized access to the authenticator. It comprises
the AppID, ASMToken (a randomly generated and maintained secret by the ASM),
PersonalID (a unique ID for each OS user account), and the CallerID (the assigned
ID of the OS for the FIDO client).36

Once the client and ASM generated the FCP and KHAccessToken, the client sends
the hashed FCP, KHAccessToken, and username to the authenticator. After receiv-
ing the data, the authenticator presents the data to the user (e.g., the AppID in a
display) and performs user verification. When the user has been verified, and they
approved the request, the authenticator generates a new key-pair and stores the
data as the key handle in its secure storage. The key handle consists of the public
key, KHAccessToken hash, and username. Also, it can be wrapped, i.e., encrypted
in a way that only the client, ASM, and authenticator can decrypt it again. It has
to be noted though, that the exact generation of the key handle is explicitly not
specified and varies among the vendors of UAF authenticators.37

After that, the authenticator sends a Key Registration Data (KRD) object back to
the client. It contains the AAID, a signature counter, a registration counter, the
hashed FCP, the public key, the key handle, and the attestation certificate of the
authenticator. Further, a signature over the values AAID, hashed FCP, counters,
and the public key is signed by the private attestation key of the authenticator.38

Finally, when the FIDO server receives the registration request (KRD and signature)
from the user agent back, it can cryptographically verify the data by checking the
sent signature. Additionally, the RP can evaluate the attestation certificate, the
AAID of the authenticator, and the hash of the FCP. Ultimately, the server stores
the public key in its database.39

Authentication

The authentication process is similar to the registration flow. When a user initiates
the authentication, the RP sends the same payload as in the registration process.
36See Pan+17, pp. 131–132; See LT17, pp. 17–19.
37See LK17b, pp. 9, 16–17.
38See Ang18, pp. 12–13; See LT17, p. 22; See LK17a, p. 17.
39See HZ16, pp. 192–193; See LT17, p. 23.
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The FIDO client determines the correct authenticator based on the received server
policy and the sent AppID. The FCP and its hash are generated in the same way
as in the registration process. Further, the key handle and KHAccessToken are
retrieved from the client database and sent to the authenticator.40

When the authenticator receives the key handle, KHAccessToken, and the hash
of the FCP, it verifies this data. If it matches, the user has been verified, and
they approved the authentication request, the corresponding private key is retrieved
from the key handle. Also, the authenticator increases the signature counter. The
authenticator sends the hashed FCP, the counter and a number used once (nonce)
back to the client. Additionally, a signature signed by the private key consisting of
the hashed FCP, nonce, and counter is sent back. In return, the client forwards the
data to the RP. Finally, the RP can cryptographically verify the sent data by the
signature and proceed with the authentication.41

Transaction Confirmation

Confirming a transaction is a particular use case of the authentication process. The
only difference between the regular authentication and the transaction confirmation
is the additional transaction text the FIDO server sends to the client. This feature
enables the UAF protocol to not only authenticate a user but also to let the user
confirm certain transactions. A transaction text can be displayed on the authen-
ticator display to show the user the details about the transaction. However, the
specifications list the authenticator display as optional. In case of the absence of a
display, the ASM can offer the display functions as a software solution.42

De-Registration

In contrast to the authentication and registration process, the de-registration process
of authenticators is done without user verification. The server or client can initiate
the process. The necessary information required for the authenticator is the AppID
and optionally the specific credential, identified by the KeyID. The FIDO client and
ASM send the required data to the authenticator. To ensure the genuineness of the
request, the client checks that the AppID matches the origin of the request.43

40See Pan+17, pp. 132–133.
41See LK17a, pp. 20–21; See Ang18, p. 15.
42See Mac+17, p. 4; See SM18, p. 251.
43See LT17, p. 31; See Mac+17, p. 7.
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2.8 Summary

This chapter established the basis of authentication, most importantly, the different
methods of authentication. These include the knowledge, often being passwords,
the possession of, e.g., security tokens or the secret to generate an OTP. Further,
biometrics is of importance for the remainder of this thesis.

Additionally, the concepts of attestation, i.e., proving or vouching for an entity,
and the challenge-response authentication, have been introduced. This concept is
of concern for the U2F and Web Authentication API. Moreover, the FIDO alliance
with the first specification, the UAF, has been explained.

Building on these conceptions of single-factor authentication will the next chapter
analyze their security in more depth, while Chapter 4 describes the combination of
different authentication methods to achieve an MFA.
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3 Security of Single-Factor Authentication

3.1 Threats Independent of the Authentication Method

Besides threats that affect specific methods of authentication, there are authentica-
tion independent threats, such as the enrollment or the transmission of the authen-
tication data. The following sections take these threats into account, too.

3.1.1 Initialization

A more general threat is the initialization of the authentication, which is also re-
ferred to as registration or enrollment. The user needs to ensure that no attacker
can intercept or copy the required enrollment data. For instance, if malware com-
promises a user’s computer and installs a keylogger, then an entered password is no
longer a secret and therefore compromised. A computer virus could also intercept
a USB connection from a security key, both when registering the device and while
using it.44

Furthermore, the user needs to make sure that their enrollment process is not ob-
served from, e.g., a surveillance camera, a hacked webcam, or a colleague from
behind. The recent rise of the Internet of Things (IoT) devices, such as internet-
connected security cameras, increases the risk of observation. Mobile phones are
subject to trojans and viruses, too. Because of this, the risk that, for instance, the
malware intercepts the camera, increases, too. The compromised camera can send a
scanned Quick Response (QR) code that contains enrollment data for a time-based
one-time password (TOTP) to an attacker.45

3.1.2 Transmission

Moreover, the chosen transmission channel is an important fact to consider. Enter-
ing a password on an unencrypted website that uses only the Hypertext Transfer
44See ULC19, p. 61.
45See Mul+13, pp. 152–153; See Dmi+14a, pp. 371–375.
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Protocol (HTTP) enables network sniffing because the password is transmitted in
plaintext and therefore accessible for everyone on the same network. For example,
public Wi-Fi hotspots are a lucrative target, especially when the user is accepting
custom Secure Sockets Layer (SSL) certificates. This enables an attacker to per-
form a MITM attack and even steal the passwords that are sent via an encrypted
channel.46

The threat also applies to other authentication methods, too. A manipulated USB or
smart card port could copy the data on a security key or smart card. Alternatively,
a tampered sensor can capture the fingerprint of a user. SMS traffic is at high
risk of being intercepted or eavesdropped. For example, an attacker can eavesdrop
the transmission of PINs or transaction authentication numbers (TANs). Further,
unencrypted e-mail traffic containing, e.g., temporary passwords or TOTPs is at
risk.47

3.2 Knowledge

»Passwords are both the bane and the foundation of [...] security«,48 yet the most
used authentication method remains knowledge. In particular, IT uses passwords.
While it seems the simplest method to use, it also comes with many downsides, too.
The service providers expect the user to remember the knowledge. Nevertheless,
the human brain has difficulties remembering a unique and secure password, PIN,
or secret questions for every different account the user has registered. The average
amount of different internet accounts a user has is ten or more, not including, e.g.,
credit card PINs.49

Because of this fact, the user does a couple of insecure things:

(a) They are using the same secret knowledge for multiple accounts or variations
of the same knowledge.50

(b) They use something easy to guess or knowledge that is tied to a personal
object, such as birthdays or names.51

46See She+19, p. 518.
47See GB17, p. 103; See Dot19, p. 58; See May17, p. 6.
48Har05, p. 206.
49See Pet18, pp. 7, 9; See Ras12, p. 424.
50See You18, p. 8; See Löw16, p. 14; See Pet18, p. 7.
51See Fri19; See And08, p. 34.
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(c) They are writing down the username and passwords, for instance, on a piece
of paper that is easily accessible for others or store PINs, e.g., in the briefcase.
Also, they save an unencrypted file on their computer or smartphone.52

This enables an attacker to steal the login credentials of a user without much effort.
Written down post-it notes enable any physical attacker to take the credentials. A
camera or a colleague looking over the shoulder might capture it, too. Saving an
unencrypted file on the computer or mobile devices enables viruses and trojans to
send the file to an attacker.53

When using a weak password, an attacker might be able to guess the chosen pass-
word. Writing down the banking PIN and storing it in the same briefcase as the
credit card even annuls the 2FA example of possession and knowledge.54

Figure 3.1 shows a representative study of password re-usage in the United States
in 2018 conducted by YouGov. In the survey, over 70% of all participants answered
that they at least re-use some of their passwords for different accounts. Only 20%
of the participants use a unique password for every service. The survey is further
classified into age and gender.

7%All of them

20%Most of them

45%Some of them

7%Don’t know

20%None of the them

5% 15% 25% 35% 45% 55%

Figure 3.1: Percentage of online accounts sharing the same password in the United States
in 201855

52See Fri19; See You19, p. 6.
53See Kis19, Chapter 4.1.
54See Swe08, p. xxi.
55Source: You18, p. 8.
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While there is only a marginal difference between the genders, the survey shows
that the password re-usage rate in the age group 18 to 34 is 79% in total. This
weakens the potential argument that younger people tend to be more aware of the
risks of stolen credentials and therefore use more complex and unique passwords.
Other surveys strengthen the observation that millennials are re-using passwords
more often compared to other age groups. Additionally, it is not uncommon to be
able to guess the partner’s password.56

Regarding the security of recovery and secret questions, it must be noted that these
might even decrease security. Relatives and friends can answer common examples
of questions such as »the first pet name, first car model, middle name of a parent,
or the city where your parents met«. This enables a malicious insider attack. Some
questions might be answerable by employing a social engineering attack, too. Besides
that, data can even be gathered by using, e.g., data mining of publicly available data
sources and reports. Ironically, it is more secure to answer security questions wrong
than honest and correct. When possible and allowed by the service, custom security
questions should be used.57

Unfortunately, in history, it was thought that a forced change of passwords increases
security. Because of this, a lot of enterprises, policies, and standards still contain
sections regarding the enforced password rotation. However, studies show that se-
curity is not increased by forcing the user to change their password regularly. Of
course, this does not mean that the user should not change their password in case
of a potential data breach.58

Further, especially true for passwords, it is not known to the user what the service
provider does in order to protect the security of the passwords. As security breaches
happen nearly daily, it is crucial to protect the password of the user. For instance,
if the passwords are stored in a database, they can be:

(a) unencrypted (worst case)

(b) hashed but not salted

(c) hashed and salted

(d) hashed but not peppered

(e) hashed and peppered

56See Kes18, p. 10; See You18, p. 8; See Pet18, p. 11; See Tho+17, p. 1429; See Pet18, p. 11.
57See Bra+06, p. 169; See Bon+15; See Rab08, pp. 5–6; See SBE09, p. 386.
58See Sic16, p. 1520; See Gra+17, p. 14; See Sch16; See And08, p. 34.
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(f) hashed, salted, and peppered

(g) encrypted

Unencrypted passwords in a database render the most significant threat, especially
when re-used by a user. Along with the e-mail or username, an attacker can probably
use the stolen credentials for other accounts, too. In case of an e-mail provider
breach, they can re-issue a new password for other websites with the »forgotten
password« mechanism.59

Even if the password is hashed, but not salted, it renders the credentials at risk.
Hashing algorithms such as Message Digest (MD) version 5 or Secure Hash Algo-
rithm (SHA)-1 might be vulnerable to a vulnerability in the future, given that their
collision resistance has already been attacked successfully. However, if a weak pass-
word is used, the hash might have been reversed already. Possessing the hashed
password list enables the attacker to execute a brute-force attack in order to reverse
as many hashes as possible. A rainbow table attack, a dictionary attack, or just
searching the hash in databases that contain a billion of reversed hash values is
another attack.60

Obtaining a password hash is often enough for an attacker to gain access to further
user accounts. They can reverse easy hashes and then automatically try to gain
access with these credentials on other websites, too. This form of attack is called
»credential stuffing« and is a subform of the brute-force attack.61

Higher protection of the password can be achieved by using a unique »salt« for each
password. The salt is a fixed-length, cryptographically strong random value that is
concatenated with the actual password before hashing it. Salting a password serves
two purposes. Firstly, it decreases the risk of a successful rainbow or brute-force
attack dramatically because the hashes changed for known passwords. Secondly, it
does not reveal users who have chosen the same password. The salt itself does not
need to be encrypted or obfuscated since its purpose is to harden the brute-force,
dictionary, and rainbow attacks and decrease their chance of success.62

Another technique to harden the password hashes is the use of a »pepper«. In
contrast to the salt, the pepper is treated as a secret and not stored in the database.
The pepper is not uniquely generated for each user account, but instead a fixed

59See Sho14, p. 277.
60See Tho+17, p. 1425; See Ras12, pp. 427–430; See And08, pp. 56–57.
61See Hun17; See Tho+19, p. 1565; See Zab19, Chapter 5.5.
62See LM16, pp. 32–34; See BB17, pp. 130–131; See Gra+17, p. 15.
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string or a string from a fixed set. When the latter is chosen, the server needs to
generate the hash with each possible pepper value and then compare it with the
stored hash when authenticating a user. An example of the effects the salt and
pepper have to the hash is shown in Table 3.1. The beginning of identical hashes is
marked bold. The table shows that just relying on pepper is not sufficient to protect
users that share the same password.63

Both techniques can be combined, but each of them independently strengthens the
generated hash of a potential weak password by increasing its length and complexity.
Therefore, these techniques reduce the risk of a collision.

user salt pepper password resulting SHA-1 hash
tim Wings daaf17ba041ff1a2184a2b02C

4a9f83442a7ca3ee
caro Wings daaf17ba041ff1a2184a2b02C

4a9f83442a7ca3ee
tim c261012e Wings 2e35d46e345fd77317e54735C

86f15d681e89b9a3
caro 5f40720d Wings ee229d4f4c8f3a9137f98e7fC

8b5d46f26d9c9b8d
tim 18e6c63a Wings 2e6536c7a16feaaca34b6b83C

a311a0880ad0f80e
caro 18e6c63a Wings 2e6536c7a16feaaca34b6b83C

a311a0880ad0f80e
tim c261012e 18e6c63a Wings 7d707f1b6dd8f811fabd17e3C

11e01d35015ce9cd
caro 5f40720d 18e6c63a Wings 33c1b9d955d6d0b7f4208719C

07e822ccbe708249

Table 3.1: Example password SHA-1 hashes with and without salt and pepper

3.3 Possession

The primary threats of authentication by possession are that it is not tied to the
user itself and can be lost or even worse stolen by an attacker. Besides, multiple
users can share the same possession factors, allowing attacks such as a malicious
insider attack. Often the possession factors are not protected itself, e.g., a keycard
to open a door can be used by an attacker, too.

Another usage implication is that the possession must be carried with the user
and they can forget it. This makes the authentication impossible if no access to
63See LM16, pp. 33–35; See Gra+17, p. 15; See Man96, p. 173.
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the possession is possible, and no backup or different authentication methods are
available. A different threat is that possession can be damaged or destroyed. For
example, carrying security keys on a keyring exposes them to damage by a fall or
liquids.64

Especially possessions that use wireless transmissions, such as BLE, NFC, or RFID,
can be copied even over some distances. For instance, an attacker can copy credit
cards in crowded places, such as trains or busses.65

Compared with knowledge, a replacement is more costly, complicated, and time-
consuming (e.g., when a passport is lost or stolen). If, for example, a whole algorithm
is broken, it can cause severe problems depending on the number of keys that need
to be replaced. Both first generation of the RSA SecurID tokens and some YubiKey
models were vulnerable and needed a replacement.66

3.4 Biometrics

In contrast to possession and knowledge, the biometric trait cannot be stolen eas-
ily, but it can be copied, e.g., the fingerprint from a high-resolution photograph.
Alternatively, copies of face models can be used to circumvent face recognition sys-
tems. In the recent past, researchers could copy both German Chancellor’s Angela
Merkel’s iris and the fingerprint of Ursula von der Leyen, the now elected President
of the European Commission, from high-resolution photographs. It must be taken
into account though that especially the so-called latent fingerprints are nearly left
everywhere, i.e., the security of biometrics heavily relies on the chosen biometric
trait.67

Further implications are that the biometric characteristics can change over time or be
temporarily unavailable because of injuries. While some injuries can heal over time,
others, especially scars, can permanently change the biometric trait and therefore
render it unusable. Also, each time the user authenticates with biometrics, a new
sample of the trait is gathered and compared to the stored one. Because the recent
probe is never 100% identical compared to the stored one (»intra-user variants«), a
threshold needs to be defined, which allows or denies the authentication attempt.
Setting the threshold to a too low value increases the risk of the FAR, while a

64See Sho14, pp. 263–264.
65See KSM14, pp. 2–3.
66See DRN17, p. 18; See BLP05, pp. 364–265; See Wes19b.
67See FKH14, pp. 7–8; See FSS18, pp. 7–8; See Mar13, p. e199; See Kre14.
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too high value decreases the usability and increases the FRR. Traits such as facial
recognition must also be usable with, e.g., different amounts of facial hair, hairstyles,
or with and without glasses.68

Another significant threat is data privacy and security. Over 50% of the users
fear of data usage, both legitimate and abusive, and collection of their biometrics.
Nevertheless, the majority of the user states that biometrics is the most secure
authentication compared to, e.g., passwords and PINs. It is crucial that the stored
biometric probe is not accessible by third-parties nor shared with them. For example,
a theft of a smartphone should not mean theft of the biometrics, e.g., fingerprint or
facial scan, too.69

However, the primary threat remains the difficulty to replace a compromised bio-
metric template. A password or a security key can be changed or replaced. However,
for instance, a fingerprint cannot be altered, changed, or replaced since it remains
the same for the whole lifespan of a person. It is advised to use, for example, only a
hash of the fingerprint and not to store the image of the fingerprint itself to counter
this threat.70

Moreover, it is necessary to respect the quality and availability of the sensor. If a
sensor is damaged, too cheap, or the surface is, for example, dirty, the authentication
and especially the usability suffers.71

3.5 Further Methods

A high threat of location-based authentication is the spoofing of the actual location
by an attacker. An attacker can choose different attacks, such as spoofing the source
IP address that tries to access a system. Another form is GPS spoofing, where an
attacker modifies the actual GPS by broadcasting false information. Further, the
Caller ID spoofing technique can be used with Voice over Internet Protocol (VoIP)
to disguise the location. Besides these techniques, the most common variant remains
the usage of a virtual private network (VPN) or Domain Name System (DNS) proxy
to hide the genuine location.72

68See JRN11, pp. 13–17, 52, 98.
69See Kes18, p. 8.
70See Sho14, p. 266.
71See Tod07, p. 37.
72See Har05, pp. 138–145; See Yua05, Chapter 4.5.3; See Eck14, pp. 115–116, 133.
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For time-based authentication, an attacker could use attacks against the Network
Time Protocol (NTP). An attacker can try to either gain access to the verification
system or to modify the synchronized time in order to allow the login attempt to
succeed.73

73See Mal+15.
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4 Multi-Factor Authentication

This chapter are describes the different MFA solutions in detail. It describes the
process of using two (2FA) or more (MFA) distinct authentication methods for user
authentication, e.g., the password (knowledge) and a security token (possession).

Since this thesis focuses on the internet and web technologies, it is always assumed
that the first factor is knowledge-based, i.e., in the majority of the use cases, a pass-
word. Therefore, this chapter does not take further knowledge-based authentication
methods into account.

4.1 Motivation for the Usage of Multi-Factor Authentication

The previous chapter derives the motivation for the usage of MFA. The chapter
showed that multiple security threats exist, independent of the specific authentica-
tion method. These make user accounts, for instance, vulnerable to theft, imper-
sonation, or phishing. Also, the previous chapter outlined the threats of password
re-usage and weak passwords that have the potential to lead to subsequent attacks
with, e.g., credential stuffing.

In order to decrease or even eliminate these threats, the user needs to deploy ad-
ditional security measures that this chapter explains. The topics of OTPs, smart
cards, security tokens, and the U2F protocol are presented in this chapter as possible
solutions to the security threats.

Further, formalities even require the usage of MFA, such as the new version of the
Payment Services Directive (PSD), EU Directive 2015/2366, coming into full effect
in September 2019.74

74See Noc18, p. 10.

28



Chapter 4. Multi-Factor Authentication

4.2 Transmission of Information

A key aspect to take into account is the chosen transmission channel for the second
or different (multi) factor. Out-of-band (OOB) authentication describes the trans-
portation of information on another channel or network than the current one. While,
e.g., the standard transmission of information on websites happens via HTTP, an
example of OOB authentication is a phone call or SMS to send the second factor.

This technique helps to reduce the risks of eavesdropping drastically since an attacker
needs to have control over two (or more) distinct communication channels. Of
course, the chosen OOB channel should protect against eavesdropping, i.e., be secure
or encrypted.

The increased security only takes effect if the different factor is not transmitted over
the first channel because the first channel might be intercepted. For instance, OOB
provides no benefits when the user enters the OTP received via a different channel
on a phishing website along with their password.75

4.3 One-Time Passwords

A widely used method to achieve MFA is OTPs. These belong to the category of
possession because of a shared secret between the client and the server. Both parties
possess it to verify or generate the OTP.

To fully understand how the OTP works, the basics and origins, especially the under-
lying message authentication code (MAC), have to be explained first. The following
subsection shortly describes the required algorithms. Hereupon in subsection 4.3.3
and subsection 4.3.4 two variants of OTPs, namely HMAC-based one-time password
(HOTP) and time-based one-time password (TOTP), are introduced. Both extend
the keyed-hash message authentication code (HMAC) algorithm.

4.3.1 Message Authentication Code

The message authentication code (MAC) is a generated code (hash), i.e., some sort
of information to protect and ensure the integrity of a message. Integrity, besides
confidentially and availability, is one of the main concepts of IT security. The MAC
is built using two parameters, a secret key that both parties know and the message

75See Gra+17, p. 17; See Ras12, p. 441; See BB17, p. 140; See GB17, p. 106.
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itself. The algorithm generates a checksum that the sender can send accompanied by
the message. Upon retrieval of the message, the recipient calculates the checksum
(MAC) themselves. If it differs from the received MAC, then the message has
been manipulated, or the transmission was faulty. Technically, the MAC can be
generated with, e.g., cryptographic-hash functions, such as HMAC, or using block
ciphers, such as cipher block chaining message authentication code (CBC-MAC) or
Data Encryption Standard (DES).76

The MAC is standardized in different norms from various institutions, for example,
the National Institute of Standards and Technology (NIST) Federal Information
Processing Standard Publication (FIPS) 198-1, the BSI technical guideline TR-
02102-1 (»Cryptographic Mechanisms: Recommendations and Key Length«), or
the International Organization for Standardization (ISO) norm ISO/IEC 9797-1
and ISO/IEC 9797-2.77

Alice Bob

Shared
key

Shared
key

Message Message

Figure 4.1: Message authentication code used to protect a sent message78

Figure 4.1 shows the MAC in use between Alice and Bob. Both Alice and Bob
exchange a secret key only they know via a secure channel. Alice now sends a
message to Bob. In order to secure the message integrity, she uses an algorithm that
takes both message and the secret key as inputs and computes the cryptographic
hash of the message, the MAC. She transmits both the message and the MAC to
Bob. If the message is not confidential, it is also possible to choose an insecure
76See Pan12, p. 565; See And08, pp. 163–168; See Eck14, pp. 391–393.
77See ST08; See Inf19a; See ISO11a; See ISO11b.
78Source: diagram by author
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transmission channel. Bob can now to calculate the MAC himself by using the same
algorithm, key, and the received message from Alice.

If his computation of the MAC matches the one sent by Alice, then the integrity
and authenticity of the message are given. Otherwise, the message might have been
intercepted and manipulated.79

Mathematically, the MAC is defined as

mac = MAC(M, K)

where M is the input message, MAC the used MAC function, K the shared secret
key, and mac the resulting message authentication code.

Sometimes the MAC is also called Message Integrity Code (MIC) in order to avoid
confusion with the media access control (MAC) layer used in network protocols.
Additionally, the MIC, without the use of a shared secret key, does not prove au-
thenticity. An attacker can modify the message and re-generate the MIC of the
modified message with the chosen hash function.80

Further, while the MAC provides authenticity regarding the origin of the data and
the data integrity, it does not provide any authenticity regarding the content of
the data. For example, mobile code is not detected by the MAC, as long as the
MAC belongs to the sent message. This implication has to be taken into account
when using the MAC to authenticate and evaluate the trustworthiness of received
messages. The encrypted traffic is increasing, but at the same time, the encrypted
malware traffic is, too.81

4.3.2 Keyed-Hash Message Authentication Code

The keyed-hash message authentication code (HMAC) extends the MAC and is
standardized in Request For Comments (RFC) 2104 and NIST’s standard FIPS 198-
1. It allows the usage of any cryptographic hash function, such as SHA family, MDs
algorithms, bcrypt, or whirlpool. Because of the black-box design of the HMAC,
the easy replacement of the used cryptographic hash function is possible. Besides

79See PP11, p. 320.
80See Tod07, pp. 60–62.
81See Wel15, p. 100.
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authentication, the HMAC is, e.g., used in TLS and JSON Web Tokens (JWTs) to
ensure data authenticity and integrity.82

Mathematically, the HMAC is defined as

HMAC(K, m) = H((K ′ ⊕ opad), H((K ′ ⊕ ipad), m))

where K is the shared secret key and K’ is the result by appending zeroes to the
key K until it reaches a full block size (B) defined by the hash function. The inner
padding ipad is constructed by repeating the byte 0x36 B-times, and opad is the
outer padding constructed by repeating the byte 0x5C B-times.

Naively, one could think that the HMAC is constructed by just hashing the secret
key with the message. In order to increase the security and to protect against a
probable collision of the hash functions, the algorithm design is slightly different
and is shown in the next figure.

opad ipad

shared secret key 0…0

hash function

hmac value

hash function

XORed

XORed intermediate hash

(1) (2)

(4)

(3)

Figure 4.2: Visualization of the HMAC algorithm83

82See KBC97; See ST08; See DR08, p. 14; See JBS15, p. 8; See TC11, pp. 3–4.
83Source: diagram by author, based on Eck14, p. 395.
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The exclusive or (XOR) operation is instead performed on the key, opad (1) and
ipad (2), respectively. Besides that, the hash function is invoked twice. Firstly, on
the result of the XOR operation on K’ and the ipad (3) with the message. Secondly,
on the final result of the concatenation of (1), (2), and (3). Figure 4.2 shows the
intermediate steps in order to generate the HMAC.

One of the key aspects of the HMAC is that the efficiency of the original hash
function is maintained and not altered by wrapping it in the HMAC algorithm. The
security of the MAC relies on the used cryptographic hash function and the strength
of the secret key, for example, the length and the chosen alphabet. The best-known
attacks against HMAC remain the brute-force and birthday attack. Section 5.2
performs further security analysis.84

4.3.3 Counter-based

The HMAC-based one-time password (HOTP) is an extension and truncation of
the HMAC and is standardized in the RFC 4226. It is a joint effort between the
Internet Engineering Task Force (IETF) and the Initiative for Open Authentication
(OATH). In contrast to the HMAC, it is not an algorithm for message authentication
and integrity, but instead an algorithm for the generation of OTPs. The security
relies on the fact that a »moving factor«, i.e., in this case, a counter is used to
generate passwords that are only valid once. Alternatively, the HMAC-based one-
time password (HOTP) is also referred to as event-based, and the secret key is called
the seed. The length of the numeric OTP is configurable, and the defined minimum
is six digits. The standard only defines HMAC-SHA-1 as the cryptographic hash
function to use. However, it is also possible to replace the cryptographic hash
function due to the black-box design, although the implementation will not comply
with the RFC anymore.85

The HOTP is mathematically defined as

HOTP (K, C) = truncate(HMAC(K, C)) mod 10d

where K is the secret key, C is a counter value, and truncate the function to dynam-
ically truncate the result of the HMAC. The result is transformed via the modulo

84See Bis18, Chapter 10.4.1; See Sta17, p. 398; See BCK96, pp. 3, 10–13; See PO95.
85See MRa+05; See Sta15, Chapter 3.
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operation into decimal numbers (mod 10d, where d is the number of digits to gen-
erate). The truncate function is the core of the HOTP and explained below:

1. At first, the dynamic truncation extracts the least four significant bits as an
offset from the 20 bytes long HMAC-SHA-1 result, i.e., from the byte 20.

2. It then extracts the next 31 bits from the offset position to generate a 4-
bytes long string. The most significant bit is skipped in order to avoid issues
with modulo operations on negative numbers caused by varying computation
results based on implementation differences.

Because of its design, there are a couple of limitations to the HOTP. The counter
used between the parties can become out of synchronization, requiring further ef-
forts to re-synchronize. Since the server only increases the counter on successful
authentication, the out of sync scenario can occur when the client incremented the
counter on, e.g., a failure, too. The server and client can become synchronized again
by generating the next OTP by increasing the counter (look-ahead window) in order
to verify if this OTP matches.
Another method for re-synchronization is the sending of multiple future values. It
is vital to limit the look-ahead window to decrease the attack surface. Further, the
server should throttle the authentication attempts in order to counter brute-force
attacks. Section 5.2 does further analysis.86

Additionally, the HOTP allows bidirectional (mutual) authentication, i.e., the user
can authenticate the server if it sends the next OTP value that the client then can
validate. HOTPs are commonly used in physical security keys, such as YubiKeys,
but are also present in software solutions, e.g., in the Google Authenticator.87

4.3.4 Time-based

The time-based one-time password (TOTP) is an extension of the HOTP and is
time-based instead of counter-based. It is a joint effort of the IETF and the OATH,
too, resulting in standardization in RFC 6238.88

Mathematically the TOTP is defined equal to the HOTP:

TOTP (K, T ) = truncate(HMAC(K, T )) mod 10d

86See SM18, p. 236; See Bis18, Chapter 13.5.1.
87See HS17, p. 716; See MRa+05, p. 14.
88See MRa+11.
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The only difference is that the counter is substituted by T, where T is a computed
time value derived from the reference date (T0). The default reference date is the
Unix epoch time (1st January 1970). Instead of increasing the counter manually or
at an event, a time-step value (X) in seconds is used to increase the counter value.
The default defined in the RFC is 30 seconds.

Formally more correct, T can be described as

T = (Current Unix time − T0)
X

In contrast to the HOTP definition, RFC 6238 explicitly defines the use of other
cryptographic hash algorithms such as SHA-256 or SHA-512. Besides the introduced
security considerations and usability implications in subsection 4.3.3, such as throt-
tling and synchronization, an essential aspect of the TOTP to take into account is
the configured time-step. While a greater time-step size increases the usability of
the user, it also expands the attack window. Also, it increases the time a user needs
to wait until a new OTP is generated. If a user or attacker sends the same OTP
in the same time-step window, the server must not accept the same value after a
successful authentication but instead wait until the next time-step window.89
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Figure 4.3: Exemplary MFA flow90

89See MRa+11, p. 6.
90Source: diagram by author

35



Chapter 4. Multi-Factor Authentication

Figure 4.3 shows an example of an authentication flow using TOTPs. In this sce-
nario, the user tries to log in to a service that uses 2FA. After entering their password
(knowledge as the first factor), they either

(a) use, e.g., a smartphone app or hardware token to generate the TOTP, or

(b) receive the TOTP from the service, e.g., via a text message, e-mail, or phone
call (the figure shows an SMS).

Once the user has obtained the OTP (possession as the second factor), they can
enter it at the login screen and send it to the server, the RP. The service can
now validate the OTP while respecting the look-ahead window and allow the user
authentication.

4.3.5 Yubico OTP

In contrast to the open standards the TOTP and HOTP, the Swedish company
Yubico developed a proprietary OTP protocol, too. It is available for all their
manufactured and sold YubiKeys. The generated OTP is a 44-characters long string,
which is constructed using Advanced Encryption Standard (AES) with 128-bit. It is
encoded into 32 hexadecimal characters using a modified hexadecimal (»modhex«)
encoding, yielding a 22-byte value. Each YubiKey contains a unique public ID of
6-bytes that is optionally prepended to the OTP. The OTP is 16-bytes long, which
is exactly the block size of the AES 128-bit algorithm.91

The constructed OTP can be divided into the following logical groups

4645652b4551︸ ︷︷ ︸
private uid

5561︸ ︷︷ ︸
usage counter

timestamp︷ ︸︸ ︷
4c5f44 65︸︷︷︸

session usage counter

pseudo-random︷ ︸︸ ︷
4752 6545︸ ︷︷ ︸

CRC

where the 48-bit unique private/secret ID is stored in the YubiKey configuration
and can be changed (write-only). Further, the OTP consists of a non-volatile 16-bit
usage counter, a 24-bit timestamp value, set to a random value after startup and
increased by an 8-Hz clock, and the session usage counter. Besides that, the OTP
contains an 8-bit volatile counter that is initialized with zero after power-up and then
increased by one each OTP generation, the pseudo-random number of 16-bits and

91KS12; See Jac16, pp. 84–86.
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a cyclic redundancy check (CRC) checksum of 16-bits for the other fields. Finally,
the generated OTP is encrypted with the per-device unique AES-128 key.92

The authentication server can either be used as a service from Yubico, as only they
know the pre-configured AES key of each YubiKey. This renders their central key
server a lucrative target for criminals since it is a centralized place of all AES keys.
Alternatively, the validation server software is available as a self-hosted solution
in different programming languages. This requires changing the AES key of the
YubiKeys in order to save the shared key on the server, too, since Yubico will not
give access to the pre-configured AES keys.93

4.4 Smart Cards

Smart cards, sometimes called chip cards or integrated circuit cards (ICCs), too, are
physical plastic cards, often the size of a credit card. They contain an internal chip
for user authentication. The chip is either exposed or can be accessed contactless.
Typical examples are SIM cards, credit cards, Common Access Cards (CACs) used
by the United States (US) Department of Defense, or identity cards issued by au-
thorities. In IT, smart cards can also store certificates and are used for computer log
on. The smart card differs from a regular storage card by having a microprocessor
and an erasable programmable read-only memory (EPROM) or electrically erasable
programmable read-only memory (EEPROM). It is defined in the ISO standard
7816, which also defines different sizes of smart cards. The NIST standard FIPS
201-2 defines the usage of smart cards for Personal Identity Verification (PIV) for
federal employees.94

Figure 4.4 on the next page shows the typical architecture of a smart card chip. The
read-only memory (ROM) contains the OS of the smart card, whereas the random-
access memory (RAM) is used for temporary storage. The application storage uses
the EEPROM. Some smart cards also contain a second processor (co-processor) for
cryptographic operations.

92See Yub15, pp. 8–9, 33–34; See ORP13, pp. 209–210.
93See Yub12, pp. 8–9.
94See Eck14, pp. 525–527; See ISO11c; See May17, pp. 6–9; See ST13.
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Figure 4.4: Typical smart card architecture95

Security-wise an essential requirement is that an attacker cannot access the private
data on the internal chip, i.e., that the smart card is tamper-resistant. This is,
e.g., achieved by physically covering the central processing unit (CPU), RAM, and
EEPROM with a shield. The data stored on the smart card can itself be protected
by using a PIN or biometrics, such as a fingerprint, to access the data.96

In terms of usability, the smart card always requires dedicated hardware, either
external or built-in. A smart card reader is necessary to use the smart card as an
authentication method. While especially enterprise notebooks contain a smart card
slot, e.g., mobile phones do not. The chip card interface device (CCID) protocol
defines a USB protocol, so it is at least possible to use a USB card reader. Addi-
tionally, smart cards with an embedded Java Card Virtual Machine (JCVM) allow
the execution of Java application and servlets, further opening the development
possibilities for smart card applications.97

4.5 Security Tokens

Besides smart cards, further MFA solutions with possession as an additional factor
are security tokens or keys. These security tokens exist as pure hardware solutions
and as software-based solutions. The minimum security requirements for the cryp-
tographic modules are defined in, e.g., the NIST FIPS 140-3 standard. This section

95Source: diagram by author, based on Fer15, p. 33; Tun17, p. 228.
96See Tod07, p. 34; See Tun17, p. 228.
97See MA17, p. 65; See Eck14, p. 539.
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introduces the well-known security tokens »RSA SecurID« and »YubiKeys«. Typi-
cally, security tokens either store a private key used in public-key cryptography or
the shared secret in order to generate or validate OTPs.98

4.5.1 RSA SecurID

The RSA SecurID exists in several variants, both as hardware and as software to-
kens. First hardware revisions used a 64-bit proprietary protocol called »SecurID
hash function«. Hardware keys newer than 2003 use the standardized 128-bit RSA
algorithm in order to generate OTPs. Newer revisions also feature a USB port that
allows the device to store custom certificates, i.e., making it a smart card device,
too. Other form factors, such as credit card-sized variants, exist, too. Each token
contains a burned in seed and a random key that was generated while manufactur-
ing the device. Since this seed needs to be known to validate the OTP, the RSA
SecurID server needs to be used. The default time for the OTP time-step value is
60 seconds, but this can be configured to, e.g., 30 seconds. The SecurID tokens are
battery powered and small enough to be carried on the keyring. The SecurID can
itself be protected by a PIN that is required to generate the OTP.99

Mobile applications for iOS, BlackBerry OS, BlackBerry 10, Windows Phone and
Android exist, too, offering support for a soft-token based solution. Desktop appli-
cations for macOS and Windows are also available.100

4.5.2 YubiKey

Besides a proprietary OTP algorithm, the company Yubico is best-known for its
physical security tokens, the YubiKey. A variety of tokens exist, ranging from dif-
ferent USB-A and USB-C variants, NFC-capable tokens to lightning connectors for
the usage with iOS. Besides different connectivity, various form factors are also avail-
able. For example, Yubico offers very tiny tokens that can remain in the USB port
permanently. All tokens, except the »Security Key« series, support Yubico’s OTP
algorithm, HOTP, TOTP, and U2F, as well as static passwords and OpenPGP. The
»FIPS series« is FIPS 140-2 certified, i.e., their cryptographic modules are approved
by the US government and are usable for PIV.101

98See ST19; See BKW14, Chapter 28.4.3.
99See Eck14, pp. 479–480; See Han+07, p. 296.

100See WPR16, pp. 3–6; See LB10, p. 49.
101See HS17, p. 716; See Jac16, p. 83; See Jac19, p. 109.
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4.5.3 Software Tokens

As already touched briefly in the previous subsections, software tokens are security
tokens completely realized as software, either as, e.g., a smartphone, mobile phone,
or desktop application. In contrast to hardware tokens, the software tokens are more
easily copiable. A password or biometric factor can itself protect software tokens,
especially smartphone applications. Software tokens have the advantage of using
device APIs such as push notifications. Some of them even allow an »authentication
by push notifications«, where a user needs to tap on an incoming push notification
to confirm the authentication. Other software tokens do not generate an OTP
but instead allow the user to approve or deny the authentication request. Software
tokens were available before the smartphone era, too, by using, e.g., Java MIDlets for
regular mobile phones that were capable of using the Wireless Application Protocol
(WAP).102

4.6 Universal Second Factor

The Universal Second Factor (U2F) is the second open standard developed by the
FIDO alliance before the Web Authentication API. It explicitly defines a second
factor for the password-based login flow. As the UAF, it is backed by public-key
cryptography, too. The main contributors are Google and Yubico, both being al-
liance members. The strong second factor can be either connected or disconnected,
e.g., built-in hardware or for instance, a USB token, NFC-capable device, or a
standalone BLE dongle. Besides that, the U2F protocol only specifies USB-human
interface device (HID) devices (internal or external), NFC, Bluetooth, and the low
energy variant BLE, as possible transport protocols. The protocol defines two lay-
ers:103

1. The first layer defines the cryptographic basics of the protocol.

2. The second layer defines the communication between the user’s authenticator
and the first layer over the chosen transport protocol (such as USB, NFC, or
BLE).

102See HS17, p. 717; See MS14, p. 111; See ULC19, p. 60; See DRN17, pp. 222–223; See HJT07,
p. 3.

103See Sri+17, p. 4; See BBL17, p. 4.

40



Chapter 4. Multi-Factor Authentication

The U2F protocol requires a web browser that is U2F-capable, a web server that
supports U2F protocol, and the authenticator called the U2F token. The specifica-
tion defines two operations, the registration, and the authentication. Authentication
is performed by generating a signature. A notable difference to the UAF protocol is
the absence of a de-registration request. The message frame defined by the specifi-
cation is based on the ISO standard for smart cards (ISO-7816) application protocol
data unit (APDU).104

Because U2F relies on the web in contrast to the UAF protocol, web browser support
has to be taken into account. Since FIDO2 supersedes U2F, the web browser support
of U2F is not of interest to this thesis. However, it is essential to notice that the
U2F was never standardized and remains an experimental API with less web browser
support.105

Moreover, U2F has been renamed to CTAP 1 since the release of FIDO2 to avoid
confusion and questions whether U2F can be used with the Web Authentication
API.106

Registration

A requirement of the registration process of a U2F token is that the user already
is registered on the RP, the web server. The registration process is similar to the
introduced process of the UAF protocol and also displayed in Figure 4.5. At first,
the server generates a challenge for the client and sends it along with the username
and its AppID to the client. The client is, in this case, the web browser. The payload
also contains the desired version of the U2F protocol and the already registered keys,
if any. The client can verify that the AppID matches the origin it is communicating
with.107

Further, the challenge parameters are constructed by hashing client data, i.e., the
challenge, AppID, and typ. The typ always has the value navigator.id.finishEnrollment
for a registration process. This data, along with the hash of the AppID, is sent to
the U2F token. After that, the token optionally verifies the presence of the user and
generates a new key-pair over the NIST elliptic-curve (EC) P-256 and stores it with
the username in its database. The token sends the registration data consisting of the

104See RKM16, p. 3; See BEL17, p. 3.
105See Sch19b, p. 31.
106See Bra+19, p. 4.
107See BBL17, pp. 4–5; See Lan+17, p. 431.
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public key, i.e., an uncompressed point on an EC and the key handle which can be
wrapped (encrypted), back to the client. Additionally, the attestation certificate of
the token and an Elliptic Curve Direct Anonymous Attestation (ECDSA) signature
over the hashed AppID, hashed challenge, key handle, and public key are sent back
to the client.108
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Figure 4.5: U2F registration process109

Finally, the client forwards the registration and client data to the RP, which can
cryptographically verify the data. The RP can verify the sent signature with the
associated public key to check the provided challenge. Additionally, the RP can test
the correctness of the token with the public key of the attestation certificate, which
the FIDO metadata service provides.110

The following Listing 4.1 shows the high-level JavaScript (JS) API registration pro-
cess.

108See BEL17, pp. 4–5; See PRW18, p. 70.
109Source: diagram by author, based on PRW18, p. 69; Lan+17, p. 428.
110See RKM16, p. 3.

42



Chapter 4. Multi-Factor Authentication

Listing 4.1: Example U2F registration request

const registerRequest = {
challenge: 'Wings2019', // usually a random string
version: 'U2F_V2' // where V2 refers to protocol version 1.2
appId: 'https://timbrust.de'

};

const registeredKeys = [];

u2f.register('https://timbrust.de', [registerRequest],
registeredKeys, (response) => {↪→

console.log(response)
});

The challenge value in the registerRequest is usually a random challenge and base64
encoded, but for demonstration purposes, a plain text string is used instead. In a
real-world scenario, the registerRequest object is generated by the RP and sent to
the client. The client calls the u2f JS object. Passing in a list of already registered
keys with the RP avoids the duplicate registration of a user with the RP.111

The received response is displayed in Listing 4.2 and contains the already explained
registrationData and clientData, both being base64 encoded. For better readability,
the strings clientData and registrationData are trimmed. Also, the clientData is
decoded to show which data it contains. The client always returns an errorCode
OK (0) indicating successful registration. Other error codes include a bad request
(2), unsupported configuration (3), ineligible device (4), timeout (5), or an other
error (1). Further, the clientData consists of the typ, challenge of the RP, and the
origin.112

111See BBL17, p. 3; See Lan+17, p. 430.
112See BBL17, p. 7; See BEL17, p. 8.
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Listing 4.2: Example U2F registration response

const response = {
clientData: 'eyJjaGFsbGVuZ2UiOiJXaW5nczIwMTkiLCJvcmlnaW4i

[...]', // further data is omitted for readability↪→

errorCode: 0,
registrationData: '...', // omitted for readability
version: 'U2F_V2'

};

// btoa() decoded clientData yields
const decodedClientData = {

challenge: 'Wings2019',
origin: 'https://timbrust.de',
typ: 'navigator.id.finishEnrollment'

};

Authentication

The authentication process involves signing a challenge from RP with the corre-
sponding private key. This enables the RP to verify the response with the saved
public key cryptographically. Figure 4.6 shows the procedure, too. The RP begins
by sending a random challenge, the key handle associated with the user, and the Ap-
pID to the client. As in the registration phase, the client can compare the received
AppID to the origin it communicates with and verifies that no phishing attempt is
in progress.113

Afterward, the challenge parameters are constructed by hashing the challenge, Ap-
pID, and typ. The typ is always set to navigator.id.getAssertion for an authentica-
tion. This data is sent along with the hashed AppID to the U2F token. There is no
difference in this process compared to the registration.114

Upon reception, the U2F token verifies the presence of the user and retrieves the
stored key-pair associated with the key handle. It sends the counter, that is increased

113See RKM16, p. 3; See BBL17, p. 6.
114See BEL17, p. 6.
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by each usage, and the ECDSA signature over the values user presence, counter,
challenge parameters and the hashed AppID back to the client.115

The client forwards the signature data, client data, and key handle to the RP, which
in return can verify the signature data with the stored public key.116
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Figure 4.6: U2F authentication process117

Listing 4.3 shows an example of a high-level JS API signing process. The RP sends
the associated key handle, the protocol version, AppID, and the authentication chal-
lenge to the client. Listing 4.4 shows the generated response by the U2F token. The
response object and decoded client data are also shown in the listing. The clientData
is also be generated beforehand by the client and identical to the decodedClientData
object.118

The client forwards the response to the RP. It consists of the client data, not its
hash, the error status, as well as the key handle and the signature data, signed with
the private key.

115Lan+17, p. 431; See BEL17, p. 7.
116See LM16, p. 118.
117Source: diagram by author, based on PRW18, p. 70; Lan+17, p. 428.
118See BBL17, p. 3.
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Listing 4.3: Example U2F authentication request

const registeredKey = {
keyHandle: '_WFf5BJ1dwtSCFzfWHoqKUhc9M3Hi0Tv58LAtPz0qM6B3A

[...]', // further data is omitted for readability↪→

version: 'U2F_V2'
};

u2f.sign('https://timbrust.de', 'Wings2019Auth',
[registeredKey], (response) => {↪→

console.log(response)
}

);

Listing 4.4: Example U2F authentication response

const response = {
clientData: 'eyJjaGFsbGVuZ2UiOiJXaW5nczIwMTlBdXRoIiwib3JpZ2H

[...]', // further data is omitted for readability↪→

errorCode: 0,
keyHandle: 'WFf5BJ1dwtSCFzfWHoqKUhc9M3Hi0Tv58LAtPz0qM6B3A-iT

[...]', // further data is omitted for readability↪→

signatureData: 'AQAAAhIwRQIhAK7xli8pV2cc8TKTOYMcdiz-ZuNVes
[...]', // further data is omitted for readability↪→

};

// btoa() decoded clientData yields
const decodedClientData = {

challenge: 'Wings2019Auth',
origin: 'https://timbrust.de',
typ: 'navigator.id.getAssertion'

};
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5 Security of Multi-Factor Authentication

5.1 Introduction

This chapter analyzes the introduced MFA solutions in regards to their security
aspects, ranging from algorithms and transportation threats, past vulnerabilities to
implementation pitfalls.

Figure 5.1 on the next page shows the already in Figure 4.3 explained MFA flow
using a TOTP. In this figure, the scenario is expanded by a phishing attack. The
user visits a phishing copy of the website they want to use and does not notice
this. They enter their password, an attacker intercepts it and then forwards it
to the legitimate service. Since the user is aware that this site is using MFA, they
provide the TOTP to the phishing site, too. This allows the interceptor to steal both
the password (knowledge as the first factor) and TOTP (possession as the second
factor). In turn, an attacker can now successfully log in to the victim’s account
and effectively bypass the MFA solution. This scenario does not explicitly exploit a
vulnerability but instead uses the conceptual weakness of an MFA solution, since it
is not phishing resistant.119

119See ULC19, p. 61.
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Figure 5.1: Exemplary phishing of an OTP with 2FA enabled120

5.2 One-Time Passwords

This section analyzes the security of both HOTP and TOTP by taking their spec-
ifications into account, mainly the underlying hash functions and synchronization
features. However, also the generation and transmission of the OTP, which is not
part of the specification, are considered.

120Source: diagram by author
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5.2.1 Algorithm

As both the HOTP and the TOTP are based on the HMAC specification, the un-
derlying algorithm needs to be evaluated first. The vital factor is the chosen cryp-
tographic hash algorithm. Mostly SHA-1 is used since it is the default defined in
the RFC.121

Given that both SHA-1 and MD5 are considered insecure, one has to ask if they are
still considered secure in the OTP context. Because of the truncation and limited
character set, the collision resistance of the chosen cryptographic hash algorithm is
not of importance for the security of the OTP generation. Therefore, using the MD5
or SHA-1 algorithm does not expose a threat. Besides, both the RFC and the BSI
still list these algorithms as secure for HMAC after a consideration of the collision
attacks.122

It is more important to implement the algorithm correctly than replacing the used
hash function. In the past, e.g., Google did not issue OTP values with a leading
zero. Besides that, the defined minimum length of the OTP values is six digits.
Meanwhile, the RFC supports up to ten. However, nearly no service provider uses
more than six digits. This decreases the OTP entropy and strengthens the brute-
force attack.123

Further, for example, the online gaming platform Steam uses a different alphabet
and character length. These divergences show that not all implementing parties
follow the recommendations of the RFC. Moreover, the user cannot verify that
the algorithms are correctly implemented. Because HOTP and TOTP rely on a
shared secret, it is crucial that both the server and client store the secret in a secure
manner.124

A theoretical vulnerability is to use the look-ahead window feature. It enables an
attacker to use a token that is longer valid than it should be. The larger the look-
ahead window period is, the bigger the time-frame an attack has brute-force, or
phish is, too. Also, it is essential that the OTP is invalidated after a successful use
or when the time in the look-ahead window has passed.125

121See MRa+11, p. 3.
122See Ste+17; See Inf19a, p. 18; See TC11, p. 2; See Eck14, p. 395.
123See Dmi+14a, p. 369.
124See Xia18, pp. 6–7; See MRa+05, pp. 11–13.
125See Dmi+14a, p. 369; See MRa+05, p. 11.

49



Chapter 5. Security of Multi-Factor Authentication

Additionally, the OTPs are subject to a brute-force attack. The server must throttle
the number of tries a user can make to counter this attack.126

The main threat, however, remains the vulnerability to phishing because RFCs do
not specify any requirements or recommendations on how to verify the origin a user
communicates with. The phishing threat is examined in more depth in the following
subsection 5.2.2.

5.2.2 Transportation and Generation

The weaknesses of both SHA-1 and MD5 do not expose a threat to the use of OTP.
However, the transmission and secure generation of the OTPs pose a challenge.
This section considers the transportation mediums SMS, e-mail, and the threats in
regards to a generation by smartphone apps.

SMS

The most significant advantage of SMS as a transportation medium is that every
mobile, ranging from an old Nokia 3310 to a new iPhone 11 Pro, is capable of
receiving SMS. All major mobile phone OSs come with an SMS application pre-
installed, so no external apps are required. The first SMS was sent in 1994, and
while the SMS traffic is decreasing, there were 9 billion messages sent solely in
Germany in 2018.127

Although there are some significant advantages with SMS transportation, such as
the »easy-to-use« factor and the fact that the user does not need to know the OTP
secret, it also comes with many downsides. Besides the cost aspect of SMS traffic,
both for the sender and potentially for the receiver due to roaming fees, the current
state of SMS traffic is considered insecure.128

The SMS traffic relies on the Signaling System No. 7 (SS7) network, which was
developed in the 1970s. It has multiple security flaws that allows an attacker to
eavesdrop or modify the in- and out-coming traffic.129

Figure 5.2 shows the described MFA flow of Figure 4.3 using TOTP. In this scenario,
the attacker can phish the TOTP designated for the user. The figure shows that

126See MRa+11, p. 6; See MRa+05, pp. 21–22; See SM18, p. 240.
127See Alp12, pp. 2–3; See Bun19, p. 57.
128See Isl+18, p. 167.
129See Wel17, pp. 17–18; See HO17, pp. 3–4; See Puz17, pp. 40, 46.
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the attacker uses an exploit in the SS7 network. This allows them to intercept all
incoming SMS. With, e.g., a phished password, the attacker bypasses the enabled
2FA without the user’s knowledge.
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Figure 5.2: SS7 exploit to phish an OTP used in MFA130

Another negative aspect of SMS transportation is routing. Many companies rely on
third-party providers to send SMS to the user. These providers are using countries
where SMS are very cheap or route them the cheapest way. On the other hand, these
countries might not enforce the SS7 security measures such as SMS home routing.
This results in a higher security risk that the SMS is compromised while delivered to
the user. Also, third-party providers are given access to the OTP, which increases
the risk of a malicious insider.131

In contrast to the web and e-mail, the user is not aware of phishing attacks in the
SMS context. However, studies show that a new technique called the Verification
Code Forwarding Attack (VCFA) is already in use. In this scenario, the attacker
sends the victim a (spoofed) SMS and impersonates the service provider. They tell
the user that, e.g., fraudulent access was detected and in order to block this attempt,
the user needs to reply with the OTP code as a security measure.132

130Source: diagram by author
131See Mul+13, p. 153; See Cer18, pp. 4, 9, 12.
132See Jak18, pp. 6–7; See Sia+17, pp. 4–5.
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Figure 5.3 shows an example of a VCFA. An attack logs in to the user’s account
with, e.g., hacked or phished credentials. Because MFA protects the account, the
user receives a verification code via SMS. The attacker now sends a fake SMS to
the victim, stating that the service has detected unusual activity. In order to block
this attempt and to prove that the user is the legitimate account owner, they should
reply with the just received verification code. If the user replies with the OTP,
the attacker now has access to the OTP, too, since they convinced the user into
forwarding their code.133
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Figure 5.3: VCFA to phish an OTP used in MFA134

Another threat is specialized malware for mobile phones. Especially for Android
exist multiple trojans that are capable of intercepting the SMS, too. Some of them
even target specific banking apps. Additionally, apps can disguise themselves as a
useful application or are a repackaged legitimate app with a backdoor.135

133See SNM16, p. 66.
134Source: diagram by author
135See Dmi+14b, pp. 146–149; See Mul+13, pp. 152–154; See HDK17, p. 114; See Ste19.
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Moreover, social engineering attacks that target the mobile service operator are an
attack vector. Figure 5.4 shows an MFA flow using TOTP, but in this case, with
another phishing scenario that targets the service provider. An attacker has again
access to the user’s password, e.g., from a previous, successful phishing attack. In
order to obtain or phish the OTP, they target the human weakness in the cell phone
provider of the user. They successfully convince them to activate another SIM card
for the victim’s phone number and receive the SMS with the TOTP, too, which
enables the attacker to complete the MFA flow successfully. This type of attack is
also called SIM swap scam or fraud. In the recent past, Twitter’s CEO Jack Dorsey
was a victim of such an attack that led to a takeover of his Twitter account.136
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Figure 5.4: Social engineering used to phish an OTP in MFA137

Another variant that is technically more complex, but feasible, is the SIM card
cloning. This allows the attacker to intercept the TOTP, too. Even if the phone
number cannot be registered twice, it still enables eavesdropping.138

Given all these facts, SMS transportation should be avoided for the usage with

136See Bla17, p. 19; See Con19; See JS11, pp. 74–76.
137Source: diagram by author
138See Eck14, p. 873; See He07, pp. 11–12.
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OTPs, since there are multiple flaws in the SS7 network itself and the process of
how the SMS reaches the user. It is also not resistant against phishing or mobile
phone trojans. Both the BSI and the NIST advise service providers not to use SMS
for the transmission of OTPs and TANs anymore.139

Further, it cannot be guaranteed that the user has a working mobile network, that
the registered mobile phone number is still active, or that the user receives the SMS
in time. These non-influenceable, external factors strengthen the fact that SMS is
not a secure and reliable choice for the transportation medium of OTPs.140

App

In contrast to the transportation of the OTP via SMS, using a standalone app such
as Google Authenticator, Authy, or even the mobile OTP app for Java-based phones
offer some advantages. While the user has to be connected to the cellular network
when receiving the OTP via SMS, the app solution works in offline or bad network
connectivity use cases, too.141

Furthermore, the app solution is cheaper because no transaction fee has to be paid
by the sender or receiver. It also solves the roaming problem. On the other hand,
the app needs to be maintained and updated to protect against, e.g., vulnerabilities
in third-party libraries and to ensure compatibility with future devices and OS
versions.142

The setup of the OTP is not phishing resistant either. A malware on, e.g., the
desktop can intercept the shared secret, or the mobile phone can contain malware.
This malware can intercept, for instance, the camera, access the generated OTP, or
access the app’s database where the secrets are stored.143

Figure 5.5 shows the scenario where an attacker successfully infected a smartphone
of a user with mobile malware. The hacker now can access either the OTP secret or
forward the secret when a user opens the app. This enables an attacker to bypass
2FA if the password was phished or obtained from another data breach.

139See Jak18, p. 8; See Inf19b, p. 27; See Gra+17, p. 19; See KVB17, p. 407.
140See EAK11, p. 327.
141See UY14, p. 228.
142See Isl+18, p. 167.
143See Dmi+14a, p. 371; See KVB17, p. 407.
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Figure 5.5: Mobile malware used to phish an OTP in MFA144

Besides that, the app itself can contain vulnerabilities. For instance, the 2FA app
Authy suffered from a vulnerable backend that could be exploited to bypass the
2FA. Additionally, the user has to ask if the app is legitimate and from a trustworthy
source and needs to have faith in the app that it keeps their data safe.145

E-Mail

Another widely used form to transmit the OTP from the server to the user is the
distribution via e-mail. E-mails are by comparison with apps more accepted by the
users and do not require a user to provide their cellphone number, but rather only
the e-mail address that is mostly provided to the service nevertheless.

However, e-mail traffic comes with threats, too. In the first place, unencrypted
e-mail traffic can be intercepted by a MITM, therefore exposing the OTP. For ex-
ample, in August 2019, only 90% of Google Mail’s outgoing traffic was encrypted.
Malware on the desktop or smartphone can intercept incoming e-mails and even
delete messages without the users’ knowledge. Figure 5.5 applies here, too, with the
variation that the OTP is not generated on the device but instead only received.146

Besides that, e-mails re-introduce the problem of delayed reception of the OTP.
Techniques such as gray-listing delay incoming messages to avoid spam. Exam-
ples such as network connectivity problems, dedicated attack (distributed denial of
service (DDoS)) or exceeded e-mail storage quota further increase the potential of
unreliable OTP transportation.147

144Source: diagram by author
145See Ste19; See Hom15.
146See Gooa.
147See KC12.
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Unfortunately, e-mails are not phishing resistant either. The same threats of SMS
also apply. A malware, both on the desktop or mobile, can intercept and forward a
received OTP to an attacker.

5.3 Smart Cards and Security Tokens

Smart cards and physical security tokens face common security threats. As both
are authentication by possession, they are at risk of being stolen, damaged, lost, or
rendered inoperable in any other way. Especially security tokens that are carried
around on a keychain are exposed to the threat of being left on the desk and therefore
being accessible for other people.

Further, physical tokens and smart cards are at risk of being cloned or disassembled
in order to gain access to the underlying chip. Also, malicious applets for Java-
enabled smart cards can try to exploit software vulnerabilities.148

The first generation of RSA SecurID tokens contained a vulnerable algorithm that
led to a successful adaptively chosen-plaintext attack. Even though RSA replaced
the algorithm in their security tokens, in March 2011, an intruder successfully man-
aged to gain access to RSA’s internal seed and serial number database that lead to
a replacement of over 40 million RSA SecurID tokens.149

Besides vulnerabilities in the company’s server, both Google’s Titan Key and Yu-
biKeys suffered from vulnerable firmware. Due to the token’s design, it is not possi-
ble to update the firmware, and the only security mitigation remains the replacement
of affected devices.150

In order to attack the chips inside smart cards and security tokens, a side-channel
attack, such as the differential power analysis (DPA), can be used. YubiKeys were
successfully attacked, and their private AES could be extracted. Therefore, an
attacker was able to gain access to the Yubico OTP generation. Additionally, an
attacker can target the EEPROM of a smart card, e.g., by trying to freeze and copy
the values.151

Moreover, given the fact that a smart card operates as a USB-HID and some RSA
SecurID tokens contain a USB port for smart card compatibility, a malware might
be able to intercept the USB communication.

148See Wit02, pp. 14–16.
149See Eck14, p. 480; See BLP05, p. 369; See HF15, p. 8.
150See Wes19b; See Bra19a.
151See ORP13, pp. 210, 212, 219; See And08, pp. 502–503, 509.
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As software tokens mainly generate OTPs, the threats regarding the generation by
an application also apply (see page 54).

5.4 Universal Second Factor

The security of the U2F protocol extends the security threats of physical security
tokens and smart cards that were introduced in the previous section, for example,
loss or theft.152

In contrast to OTP, the U2F protocol is phishing resistant. This resistance is
achieved by binding the token, registration, and authentication to a specific origin.
Given the fact that the U2F token compares the origin, phishing sites that target,
e.g., typos in the Uniform Resource Locator (URL) do not expose a threat.

However, the U2F protocol is not resistant to malware. A malware that controls the
USB ports of a computer can communicate with the token, too.153

When using the TLS ChannelID, also called token binding, the user is protected
against MITM attacks. The U2F protocol specifies the token binding as a possible
extension. Token binding enables mutual authentication in TLS by using crypto-
graphic certificates on both sides. It has to be noted though, that using the TLS
ChannelID is defined as optional in the specification.154

Security researchers were able to find a potential vulnerability in the optional key
wrapping of the key material if the counters are not correctly increased and checked.
This attack could lead to a successful cloning attack. The security token vendors and
the FIDO alliance have adjusted the specifications and recommendations. Further,
researchers were able to control the token via the WebUSB API by emulating the
NFC capabilities of a YubiKey to use it as a smart card instead.155

Albeit it is not a vulnerability, the lack of a display on the authenticator can render
a threat. An attacker might be able to change the transaction a user signs with the
test of user presence. Further, the absence of a display might confuse a user if a
registration or authentication was successful. Also, malware can continually request
the touch of a button to complete an MFA authentication flow with, e.g., phished or
key-logged credentials. Due to the lack of a display, the chances are high that a user

152See Lin17b, pp. 12–13.
153See JK18, pp. 10–1; See Sri+17, p. 9.
154See Sri+17, pp. 6–7.
155See Kan19, p. 3.
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accidentally confirms a fraudulent authentication from the malware. Additionally,
the user might not notice the fraudulent attempt and presses the button again due
to the lack of feedback from the token.156

In theory, an attacker could manufacture a backdoor variant of the U2F token, which
either leaks or sends all the private keys to the attacker. However, this attack has a
low probability compared to the other attack vectors.157

Moreover, the centralized managed metadata service for device attestation can ex-
pose a threat. Given that an attacker takes over this server, they can, e.g., enable
counterfeit security tokens to become legitimate attested tokens. On the other hand,
legitimate tokens can be flagged as banned or compromised. Besides that, the ser-
vice is subject to a DDoS attack that prevents RPs from updating their metadata
database. Since vendors offer their attestation metadata independently, possible
mitigation is to implement an independent metadata service.158

5.5 Overall Comparison of Threats

The following section sums the introduced methods of authentication and analyzed
MFA solutions up and shows their key threats.

Table 5.1 shows the introduced authentication methods grouped by the authen-
tication methods knowledge, possession, and biometrics. It shows that primary
authentication by possession is used as an additional authentication factor, given
the fact that passwords are the de facto standard on the internet as the first factor.
Biometrics can be used, for instance, with the UAF, but in practice there exist very
few applications that use biometrics as an additional factor for internet-based login
flows.

Further, it shows that no authentication method is free of vulnerabilities, even when
combined as 2FA or MFA. The most present vulnerability is the missing phishing
resistance alongside the threat of interception, followed by physical theft. The table
shows that every introduced method of OTPs is subject to phishing attacks and that
the only phishing resistant solution is U2F. Unfortunately, hardware tokens itself
are often not protected.

156See Lan+17, p. 434; See DDC18, p. 15; See Ree+19, pp. 1518–1519; See Rey+18, p. 884.
157See Dau+18, p. 3.
158See Pow18; See Cha+17, p. 17.
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Hardware OTPs 3 Theft of the device, phishing, interception,
replay attacks, brute-force, damage, obliv-
ion, loss

App OTPs 3 Theft of the device, phishing, interception,
replay attacks, brute-force

SMS OTPs 3 Theft of the device, phishing, interception,
replay attacks, brute-force, unavailability

E-Mail OTPs 3 Theft of the device (in case of mobile
phones), interception, phishing, brute-force,
unavailability

Smart cards 3 Cloning, theft, damage, oblivion, loss, side-
channel attacks, phishing (in case of OTP
generation)

Security Tokens 3 Cloning, theft, damage, oblivion, loss, side-
channel attacks, phishing (in case of OTP
generation)

U2F 3 Cloning, theft, damage, oblivion, loss, side-
channel attacks

Bi
om

et
ric

s Fingerprints (3)

Replica, forgery, replay attacks, injuries, un-
availability of the sensor

Facial scan (3)

Iris scan (3)

Table 5.1: Overall comparison of threats159

Independently of the used MFA solution, the service provider must require the usage
of MFA the login and for sensitive transactions, such as the change of the user’s
password, the de-activation of 2FA or the initiation of an account recovery process.
Failing to do so enables an account takeover if an attacker can successfully perform,
for example, a session hijacking because no additional confirmation is necessary to
de-activate the MFA. Alternatively, if, for instance, an attacker controls a victim’s
e-mail account, they can reset any password for every account that is registered with
the e-mail if the service provider does not enforce 2FA for this operation.160

159Sources: table based on analysis from previous chapters and additionally from Gra+17, pp. 41–
45.

160See Dmi+14a, p. 370.
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6 Introduction to the Web Authentication API

6.1 Goal of the Web Authentication API

The goal of the Web Authentication API is to enable »the creation and use of strong,
attested, scoped, public key-based credentials by web applications, for the purpose of
strongly authenticating users«.161 Each public key credential is scoped to the relying
party (RP), i.e., cannot be re-used for other websites (RPs). The authenticator has
the duties and responsibilities to create, store, and access these credentials. These
actions always require the user’s consent. The user agent, i.e., web browser performs
the communication with the authenticators and RPs to preserve the user’s privacy.
Attestation ensures that each operation from an alleged authenticator is legitimate
and cryptographically verifiable. The primary use cases for the Web Authentication
API are passwordless registrations and logins, but also to provide a second-factor
or to sign specific transactions.162

6.2 History and Evolution

The Web Authentication API is a result of joint efforts between the FIDO alliance
and the World Wide Web Consortium (W3C). It is an outcome from preceding
industry standards, namely Universal Authentication Framework (UAF) and Uni-
versal Second Factor (U2F). This chapter introduces the Web Authentication API
with a focus on the technical implementations, protocols, and used techniques.163

The first specification version of FIDO’s U2F protocol was the starting point for
the development of the Web Authentication API in joint efforts with the W3C. The
CTAP is based on the U2F specification version 1.2, which complements the Web
Authentication API. Both projects are part of the FIDO2 project.164

161Bal+19, Abstract.
162See Bal+19, Abstract, Chapter 1.2.
163See Eik19, p. 24.
164See Gri17, pp. 169–170.
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6.3 Technical Implementation and Details

6.3.1 FIDO2

As already briefly introduced in subsection 2.7.1, the FIDO2 project is a joint ef-
fort of the W3C and the FIDO alliance. It consists of the JS standard, the Web
Authentication API, and the Client-to-Authenticator Protocol (CTAP). The W3C
standardized and manages the Web Authentication API, while the FIDO alliance
authored the CTAP. Additionally, the ITU standardized the CTAP in their recom-
mendation, ITU-T X.1278. However, the FIDO alliance also initially developed the
Web Authentication API under the name FIDO 2.0 before officially handing it over
to the W3C.165

Figure 6.1: FIDO2 architecture overview166

Figure 6.1 shows the overview of the FIDO2 project. A noteworthy change in con-
trast to the U2F specification is the possibility to use either a roaming, i.e., an
external authenticator or an internal authenticator that is built into the device or
platform, respectively.

6.3.2 Client to Authenticator Protocol 2

The Client-to-Authenticator Protocol (CTAP) 2 is based on the U2F protocol ver-
sion 1.2 and defines three parts:

1. The authenticator API

165See SM18, p. 254; See GH18, p. 3; See ITU18b.
166Source: https://fidoalliance.org/specifications/, last accessed on 09/14/2019
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2. Message encoding

3. Transport-specific bindings

The key methods of the authenticator API are explained in more detail below.
Message encoding describes the process of encoding the corresponding message in
a binary form called Concise Binary Object Representation (CBOR). This binary
form is suitable for, e.g., the transport over BLE, because plaintext strings and
JavaScript Object Notation (JSON) objects can be too big for a means of transport
over low data rate protocols. The transport-specific bindings define the required
transformation and bindings in order to comply with the transport protocol speci-
fications.167

An essential difference between CTAP2 and the preceding standard U2F is the fact
that CTAP2 describes only the communication between the client, i.e., web browser
and the authenticator. The U2F standard also defines the JS API in order to com-
municate with the authenticator. Figure 6.2 shows this architectural difference.168

Authenticator Relying Party

U2F

U2F transport
protocols

U2F JS
API

Authenticator

Client

Relying Party

FIDO2

CTAP Web Authn
API

Browser JS App

Client

Browser JS App

Figure 6.2: Architectural differences between U2F and CTAP2169

167See Bra+19, pp. 4–5.
168See Ngu15, p. 51; See SM18, p. 254.
169Source: diagram by author, based on Sri+17, p. 4; Bal+19, Chapter 6.
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Registration

The registration procedure invokes the method authenticatorMakeCredential. The
input parameters are identical to those defined in the higher-level Web Authen-
tication API, and subsection 6.3.3 further explains these. Upon reception of the
required data, the authenticator first checks if the excludeList contains a credential
ID that is already registered with the authenticator. This prevents a user from
registering multiple accounts for the same RP. If the user verification or presence
option is passed, the authenticator has to ensure a legitimate user is present. Upon
successful user verification, the authenticator generates a new credential key-pair
for the specified algorithm.170

After that, the authenticator generates the attestation object. It consists of the
authentication data, which contains the hash of the RP ID, a counter, flags if the
user has been verified, and the public key with its unique credential ID. Besides that,
the authenticator also sends the attestation statement, if required. For example,
a TPM or Android Key attestation can issue the statement. Alternatively, the
authenticator can generate it with the private attestation key.171

Authentication and Transaction Confirmation

Authentication is performed using the method authenticatorGetAssertion of the
CTAP, where the higher-level Web Authentication API defines the input param-
eters. The identifier of the RP is sent to the authenticator and optionally a list
of public keys the authenticator is allowed to retrieve. After optional user verifi-
cation and presence detection, the authenticator displays the data to the user if it
has a display to do so. When these checks succeed, the authenticator accesses the
corresponding credential.172

The authenticator generates an assertion signature over the received hash of the
client data and the authenticator data. The authenticator data consists of the
hashed RP ID, the flags for user presence and verification, a counter, and the at-
tested credential data. The attested credential data comprises the Authenticator
Attestation Globally Unique ID (AAGUID), credential ID, and the credential public
key.173

170See Bra+19, p. 9.
171See Bra+19, p. 9; See Bal+19, Chapter 8.
172See Bra+19, pp. 11–13.
173See Bal+19, Chapter 6.4.1.
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Factory Reset

The CTAP defines a method to completely factory reset an authenticator in order
to de-register every user account and key material stored on it. This is similar to
the UAF de-registration process, but contrary to the U2F specification, which lacks
the possibility to do so. The protocol specifies that the authenticator may ask for
user confirmation to avoid the accidental deletion of all user accounts. However, it
is not possible to delete a specific user account and key-pair.174

6.3.3 Web Authentication API

The Web Authentication API is an extension of the Credential Management API.
This is another API in development by the W3C, but currently in a draft state
and not a recommendation yet.175 The Credential Management API defines the
navigator.credentials property with the create and get methods. Its goal is to offer an
API for programmatically accessing the user agent’s password storage capabilities.
The Web Authentication API is adding further method overloads to support public-
key based credentials, too.176

Authentication and registration in the context of the Web Authentication API are a
particular form of a network protocol called a ceremony. A ceremony describes the
concept of extending a network protocol to include human nodes, too. This allows
the specification to take the human factor into account, too.177

The Web Authentication API is backward compatible with the U2F protocol, thus
making every security token that is usable for U2F compatible with the Web Au-
thentication API. However, a severe restriction of the legacy U2F protocol in usage
with FIDO2 is that it is only usable as a second factor and not for passwordless
logins.178

Registration

A new key-pair for the registration with an RP is generated when the client invokes
the asynchronous method navigator.credentials.create with an object that contains

174See Bra+19, p. 26.
175The W3C standardization process can be viewed in the Section A.1
176See Bal+19, Chapter 1; See Wes19a, Chapter 1.1.
177See Ell07, p. 2.
178See Bal+19, Chapter 2.2.1, 6.1.2.
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the required publicKey property. The publicKey object contains the ID, name of
the RP, and the user information consisting of a username, display name, and a
unique ID. Given the fact that, e.g., the authenticator stores the ID value, it should
not consist of any information that can be linked to the user. Further, the pub-
licKey object contains a random challenge generated by the server to prevent replay
attacks.179

Besides that, with the public key credential parameters array (pubKeyCredParams),
the RP can define the desired algorithm that should be used for the key-pair gen-
eration. The algorithm (alg) IDs are obtained from the Internet Assigned Numbers
Authority (IANA) registry of CBOR Object Signing and Encryption (COSE) al-
gorithms. The ID -7 expands to ECDSA with SHA-256, while -257 links to the
RSA algorithm in conjunction with SHA-256. The order in the array describes the
preferred algorithm, but also accepted fallback algorithms.180

Additionally, the RP can define a list of credentials (excludeCredentials) that need
to be checked if they exist, e.g., to prevent the user from creating multiple key-pairs
for the same RP. Furthermore, the RP can specify a timeout value after which the
operation should succeed or fail.181

Moreover, the RP can set the authenticatorSelection property which defines the
requirement if a user needs to be verified (possible values are required, preferred, and
discouraged) and the option if the credentials need to be stored on the authenticator
(requireResidentKey). Further, the RP can specify the authenticator attachment
modality, i.e., if the authenticator should be platform-specific or a cross-platform
(roaming) authenticator.182

Finally, the attestation property is of importance. The RP can specify either a di-
rect, indirect, or none attestation. None means that the RP is not interested in
the attestation of the authenticator at all. A direct attestation requires a signed
attestation statement generated by the authenticator to verify its authenticity. In
contrast, an indirect attestation leaves the authenticator in charge of how to gen-
erate the attestation certificate. The authenticator may use a per-origin certificate
authority (CA) to protect the user’s privacy or implement and use the ECDSA.183

179See Bal+19, Chapter 5.1.3.
180See Bal+19, Chapter 5.3, 11.3.
181See Bal+19, Chapter 5.4.
182See Bal+19, Chapter 6.2.1.
183See Bal+19, Chapter 5.4.6.
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Listing 6.1: Exemplary Web Authentication API registration request

const publicKeyOptions = {
challenge: 'Wings2019', // normally a random string from the

server in binary form (Uint8Array)↪→

rp: {
name: 'Web Authn Test',
id: 'https://timbrust.de'

},
user: {

id: 'C0E3F2BFCFA8179F', // usually in binary form
(Uint8Array)↪→

name: 'me@timbrust.de',
displayName: 'tim'

},
pubKeyCredParams: [{ alg: -7, type: 'public-key' }],
authenticatorSelection: {

authenticatorAttachment: 'cross-platform'
},
timeout: 600,
attestation: 'none'

};

const credential = await navigator.credentials.create({
publicKey: publicKeyOptions

});

Listing 6.1 shows an example payload for the registration of a new credential with
the Web Authentication API consisting of the previously introduced parameters.
The publicKeyOptions payload generated and sent by the RP can be passed to
the authenticator by calling the CTAP authenticatorMakeCredential method. The
client passes the user and RP object to the authenticator. Further, it is evaluated
if the authenticator should verify the user or if a check of user presence is sufficient.
For this evaluation, the property userVerification is used. Besides that, the list of
credentials to exclude, the public key credential parameters, and the hash of the
client data is provided to the authenticator. The client data comprises the server
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provided challenge, its origin, and the string type webauthn.create.184

Upon reception of the attestationObject from the authenticator, the client can gen-
erate the credential to be returned to the RP, as shown in Listing 6.2.

Listing 6.2: Web Authentication API registration response

const credential = {
id: 'BShOCQ2c32dv4aqyy3oWmcu_9s4tz0VIob81U5tg [...]',
rawId: ArrayBuffer(59),
response: {

clientDataJSON: ArrayBuffer(121),
attestationObject: ArrayBuffer(306)

},
type: 'public-key'

};

The created credential object consists of an ID, both as a string and binary repre-
sentation, the type that is always set to »public-key« and the response object. The
response object is constructed from the returned attestationObject and the client
data. Listing 6.3 shows the client data, too.185

Listing 6.3: Web Authentication API registration client data

const clientDataJSON = {
challenge: 'Wings2019',
origin: 'https://timbrust.de',
type: 'webauthn.create'

};

Listing 6.3 shows the decoded client data from the Web Authentication API reg-
istration response from Listing 6.1. The data contains the challenge sent by the
RP and the origin of the RP. Each registration is flagged with the type of »webau-
thn.create«.186

184See Bal+19, Chapter 5.4, 6.4.2.
185See Bal+19, Chapter 5.1.
186See Bal+19, Chapter 5.10.1.
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In contrast, the attestationObject sent from the authenticator contains more prop-
erties and is shown in Listing 6.4 on the next page. On the first hierarchy level, it
contains the attestation statement format identifier (fmt), such as »packed, tpm, or
fido-u2f«, the attestation statement (attmStmt), and the authentication data (au-
thData). The authentication data includes the evaluated user flags, for instance, if
the user was present or verified, a signature counter, if supported by the authen-
ticator, and the hash of the RP ID. In detail, the attested credential data of the
authentication data contains the public key ID, the public key itself, e.g., the point
on an EC and the AAGUID if attestation is not set to none. Otherwise, it is set to
16 zero bytes.187

187See Bal+19, Chapter 5.1.3, 6.1.
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Listing 6.4: Web Authentication API registration attestation

const attestationObject = {
fmt: 'fido-u2f',
attStmt: {

sig: '[...]',
x5c: []

},
authData: {

rpIdHash: '068a7ad7f858dadbf691af6f2f7ca86d4dee5a080b
[...]',↪→

flags: {
userPresent: true,
reserved1: false,
userVerified: false,
reserved2: '0',
attestedCredentialData: true,
extensionDataIncluded: false

},
signCount: 0,
attestedCredentialData: {

aaguid: '0000000000000000',
credentialIdLength: 96,
credentialId: ArrayBuffer(59), // identical to

publicKeyCredential.id↪→

credentialPublicKey: {
kty: 'EC',
alg: 'ECDSA_w_SHA256',
crv: 'P-256',
x: 'xHxgcBFgJolQ5lvukADki+cMum3Lmk50tfj0YGH3nYE=',
y: 'W1OKIxfc6pIE/ANeTD7MqnNVjBXd0L7We9xZ3Hx6nD8='

}
}

}
};
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Authentication

An authentication ceremony is started by calling the client’s asynchronous method
navigator.credentials.get. As in the registration procedure, the RP needs to generate
a publicKeyOptions object. For the authentication, a random challenge, a timeout
value, and the allowed credentials array are required. The RP can send a list of
associated credentials that are suitable for user assertion. The RP may provide an
rpId and flag for user verification, too. If omitted, the origin of the RP and default of
preferred user authentication is used instead. Each allowed credential is identified
by its ID and an optional array of transports the client is allowed to perform to
retrieve the credential. Listing 6.5 on the next page shows the example payload for
the assertion.188

Subsequently, the user agents generate the client data consisting of the origin, chal-
lenge, and the type that is always set to webauthn.get. It passes the hash of the
client data, the ID of RP, user presence and verification flags, and list of allowed
credentials to the authenticator by calling its authenticatorGetAssertion method.189

188See Bal+19, Chapter 5.1.4., 5.5, 5.10.3.
189See Bal+19, Chapter 6.3.3.
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Listing 6.5: Exemplary Web Authentication API authentication request

const publicKeyOptions = {
challenge: 'Wings2019Auth', // normally a random string from

the server in binary form (Uint8Array)↪→

allowCredentials: [
{

id: 'BShOCQ2c32dv4aqyy3oWmcu_9s4tz0VIob81U5tg [...]',
type: 'public-key',
transports: ['usb', 'ble', 'nfc']

}
],
timeout: 6000

};

const assertion = await navigator.credentials.get({
publicKey: publicKeyOptions

});

Upon reception of a response from the authenticator, the client can generate the
response, i.e., an assertion object. Listing 6.6 on the next page shows the response
that can be sent to the RP. The response is similar to a registration response and
also contains the credential ID in binary and a string representation. Further, the
client data is returned to the RP, too. The authenticator data is equal to the reg-
istration procedure. The most important property is the returned signature value
over the authenticator data and the client data hash. The RP can cryptographically
verify the signature with the corresponding public key of the user.190

190See Bal+19, Chapter 5.1.4.1, 5.2.2, 6.3.3.
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Listing 6.6: Web Authentication API authentication response

const assertion = {
id: 'BShOCQ2c32dv4aqyy3oWmcu_9s4tz0VIob81U5tg [...]',
rawId: ArrayBuffer(59),
response: {

authenticatorData: ArrayBuffer(191),
signature: ArrayBuffer(59),
clientDataJSON: {

challenge: 'Wings2019 Auth',
origin: 'https://timbrust.de',
type: 'webauthn.get'

}
},
type: 'public-key'

};

6.3.4 Web Browser Support

Table 6.1 shows the web browser support status of the Web Authentication API,
both for desktop and mobile web browsers, and if they support the API. If so, the
table shows the version that initially added support for the Web Authentication API
alongside the release date. The following subsections will explain the web browser
support more detailed.

The global web browser support since August 2019 adds up to around 70%, given
the fact that web browser usage statistics vary between services.191

191The obtained data is available in the Appendix Section A.2, see Staa.
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Web browser Supported Version Release Date
D

es
kt

op
Chrome 3 67 May 2018
Firefox 3 60 May 2018
Opera 3 54 June 2018
Internet Explorer 5 - -
Edge 3 18 November 2018
Safari 3 13 September 2019

M
ob

ile

Opera Mobile 5 - -
IE Mobile 5 - -
Safari (iOS) 5 - -
Google Chrome (iOS) 5 - -
Firefox (iOS) 5 - -
Brave (iOS) 3 1.11.3 August 2019

A
nd

ro
id

LineageOS Stock Browser 5 - -
Chrome for Android 3 70 October 2018
Firefox for Android (Fennec) 3 68 July 2019
Firefox Preview (Fenix) 5 -
Opera 5 - -
Opera mini 5 - -
Edge 5 - -
Samsung Internet 5 - -
UC Browser 5 - -
Mint Browser 5 - -
360 Secure Browser 5 - -
QQ Browser 5 - -
Yandex Browser 5 - -
Brave Browser 5 - -

Table 6.1: Web browser support of the Web Authentication API192

Desktop Support

The Web Authentication API is supported from Chrome 67 onwards, which was
released in May 2018. Firefox added support for the Web Authentication API in
May 2018 with its version 60 as well.
Microsoft added support for the Web Authentication API in Edge 13 which was
released in November 2015. However, the implementation is based on an earlier
draft version of the Web Authentication API. Support for the FIDO 2.0 specification
was added in Edge 14 (released in December 2016). The feature is hidden behind a

192Sources: BK18; JT18; Dav18; Ger18; Jon19, a detailed analysis of Android web browsers is
available on the USB flash drive in the appendix.
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configuration option though and was enabled for all users with the release of Edge
17 in November 2018.193

Web browsers such as Opera, Vivaldi, Brave, and upcoming Edge versions that are
all based on Chromium, the web browser and source code behind Google’s Chrome
web browser, have support for the Web Authentication API, too.194

As the development for the Internet Explorer halted, and it is only receiving security
updates, no support is available for new web APIs, including the Web Authentication
API. Even though it is still used by over 4% of all desktop web browser users and
remains supported for the OS Windows 7, 8.1 and 10. This is an important fact to
take into account when evaluating the usability of the Web Authentication API since
especially enterprise users often cannot upgrade or switch their web browser.195

Safari added support for the Web Authentication API feature in December 2018
but only for the preview variant of the web browser, called the Safari Technology
Preview. On September 20, Safari 13 was released for the OS versions macOS
High Sierra and Mojave. However, the support is limited to USB-HID enabled
authenticators.196

Besides that, Windows 10 also added support for MFA by incorporating the technol-
ogy described in the FIDO2 standard. This allows biometric authentication with,
e.g., fingerprints when a reader is available or to use the facial recognition technology
or iris scans. The feature is called »Windows Hello«. Credentials are only stored
locally and are protected by asymmetric encryption. Besides, the biometric authen-
tication Windows Hello also supports PINs. The TPM stores this PIN. Windows
Hello can be used in desktop web browsers, i.e., delegating the Web Authentication
API functionality to the OS.197

Mobile Support

The support for the Web Authentication API in mobile web browsers is inferior to
desktop support. While Chrome for Android supports the Web Authentication API
since October 2018 and Firefox since July 2019, stock iOS completely lacks support
for the Web Authentication API. Even though in the iOS 13 settings the feature can

193See Jac19, p. 112.
194See Kis19, Chapter 7.1.
195See Sup19c; See Stab.
196See Dav18; See Sch19c.
197See Bio16; See JK, p. 6.
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be enabled in the »Experimental Features« section, the API remains unsupported
or at least there is no way to add an authenticator in the web browser yet.198

The only ray of hope is that the Brave web browser for iOS added support for
the security key »YubiKey 5Ci« which enables the Web Authentication API for
iOS by using an Apple certified Lightning accessory. Figure 6.3 shows a successful
authentication with the YubiKey 5Ci and the Brave web browser for iOS. iPad
devices with a USB-C connector currently do not work yet. Further, the YubiKey
5Ci is not recognized in the Safari web browser, too.199

Figure 6.3: Successful use of the Web Authentication API with the Brave web browser on
an iPhone 7 with the YubiKey 5Ci200

However, Figure 6.4 shows the try to use an existing Security Key by Yubico with a
lightning dongle in the Brave web browser. While the token has power, Brave does
not recognize it. Neither is it usable. Safari does not show an overlay for the key
usage either.

198See Ger18; Jon19, See.
199See Bra19b; See Bra19c; See Mah19.
200Source: author’s own photograph
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Figure 6.4: Failed try to use the Web Authentication API with the Brave web browser on
an iPhone 6201

It has to be noted though, that other Android web browser vendors need to im-
plement the functionality themselves. Other geographic regions use a variety of
different web browsers, e.g., the UC Browser, 360 Security Browser, Mint Browser
from Xiaomi, or the QQ Browser from Tencent. Neither they, nor web browsers such
as Samsung Internet, Opera (mini) for Android, Edge, or the Android Stock web
browser are currently supporting the Web Authentication API. The current Fire-
fox for Android (codenamed »Fennec«) web browser is based on Chromium, too,
in contrast to the desktop web browser which is powered by Mozilla’s web browser
engine Gecko. A new Firefox for Android web browser, currently called Firefox Pre-
view (codename »Fenix«), which uses a mobile compatible version of Gecko, lacks
support for the Web Authentication API, too. However, Android offers support for
FIDO2 as an API, and the OS itself is FIDO certified.202

Other mobile OSs, for example, Windows Phone 8, BlackBerry OS, BlackBerry 10
or KaiOS do not support the Web Authentication API. Further live demonstration
captures are available on the attached USB flash drive in the appendix.

201Source: author’s own photograph
202See Eik19, p. 24; See Eik19, p. 22.
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6.3.5 Usability

One of the main goals of the Web Authentication API is the »it just works« feeling,
by providing a secure but abstract solution for the end user. The chosen web browser
and OS are responsible for the design of the login and registration windows, often
being native overlays, while in contrast, the website designs the traditional login
masks and forms. In order to maintain high usability, the user should be able to use
a variety of tokens, e.g., built-in key stores protected by biometrics or an external
token that uses BLE, NFC, or a USB-A or USB-C interface. Unfortunately, the »it
just works« cannot be fulfilled on macOS or iOS yet.203

While the desktop variant of Safari at least contains support for the Web Authen-
tication API, the CTAP is only implemented for USB-HID based tokens. Unfortu-
nately, no indication, for instance, an overlay or pop-up, that shows the user needs
to interact with their authenticator is displayed in Safari. Additionally, Firefox only
supports USB-HID based authenticators on other OSs than Windows 10.204

Besides that, an external token that contains a vulnerability in its firmware often
needs to be replaced, making this both a massive usability loss, as well as increasing
security risk when not replacing the affected token. Both Google’s Titan Key and
YubiKeys were affected in the past and needed to be replaced.205

Further, external tokens are exposed to the environment and suffer from the same
problems that regular security tokens have.206

An additional usage implication is the recommendation to have at least two reg-
istered tokens for each RP. In case one token is lost, stolen, damaged, or in any
other way inaccessible, the user still possesses a backup token to gain access to
their accounts. Moreover, the Web Authentication API does not specify a way to
backup registered credentials. Unfortunately, the different USB interfaces and wire-
less transportations are not supported on all devices and OS, which further decreases
the usability and interoperability.207

Also, the fact that different certification levels of security tokens by the FIDO al-
liance exist does not make it easier for the end user to pick the right security token.
Technically inexperienced users may not know the difference between a U2F and

203See Mah19, p. 84.
204See Moz.
205See Wes19b; See Bra19a.
206See Section 5.3
207See Bal+19, Chapter 13.6; See DDC18, p. 15.

77



Chapter 6. Introduction to the Web Authentication API

FIDO2 certified product, even though only the latter is capable of a complete pass-
wordless process. Additionally, end users may not be technically experienced enough
to understand the differences in the certification levels of the FIDO alliance.208

Finally, different studies showed that users struggle to enable MFA with roaming to-
kens due to a lack of feedback and guidance from both the RP and the web browsers.
The built-in platform authenticator might be able to change this challenge.209

6.4 Security Aspects

The following sections build upon the security of MFA, especially security tokens
and U2F by further concentrating on the specifics of the Web Authentication API
and the architectural changes opposite to the U2F protocol.

6.4.1 Problems

The problems that are transferred to the Web Authentication API are the ones of
authentication by possession already described in Section 3.3 and further specified
for security keys in Section 5.3 and U2F in Section 5.4. If the Web Authentication
API is used with a physical security key, then the same threats of damage, loss,
or theft exist. Besides that, if the security key itself is not protected (by, e.g.,
fingerprints), an attacker can gain access to an account if he steals or copies the
authenticator. Built-in key stores in devices, such as smartphones or laptops, do not
protect against theft, either. Furthermore, the roaming authenticators are subject
to physical attacks, in particular, side-channel attacks such as a DPA.

Security-wise the Web Authentication API has received little attention yet. A first
security analysis showed some weaknesses. These are described in more detail below.
It has to be noted though, that these security considerations are only from one
source and outlined only theoretical attack vectors. In contrast, the security of the
Web Authentication API was formally verified, and findings only resulted in privacy
concerns, and no security issues were found.210

The first problem of the Web Authentication API is the registered COSE algorithms
defined in section 11.3 of the specification. Support for RSASSA-Public Key Cryp-

208See FIa.
209See Rey+18; See Ley19, p. 884; See DDC18, p. 15.
210See Sta18; See GH18, p. 9.
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tography Standards (PKCS)#1 v1.5 is explicitly required, making it vulnerable for
the over twenty years known »Bleichenbacher attack«.211

Further, the Elliptic Curve Digital Signature Algorithm (ECDAA) does not specify
or require point compression. This can lead to invalid curve attacks, where an
attacker can send a chosen point that is assumed to be on the EC. However, if the
point is not on the curve, it can lead to the leakage of the private key. Random
values for the secret key in ECDSA expose a threat, too. It is recommended to use
determinist nonces instead.

A further critique is the choice of the EC. The specification of the Web Authentica-
tion API defines two curves. Both are Barreto-Naehrig (BN) curves. Recent attacks
showed that they do not provide enough protection against the elliptic curve dis-
crete logarithm problem (ECDLP) and suffer from a reduced amount of bits for
security.212

Additionally, the usage of the random number generator (RNG) is not further spec-
ified. Weak implementations might use the standard RNG and not a suitable cryp-
tographically secure pseudo-random number generator (CSPRNG) for the ECDAA.
Moreover, the attestation can be criticized because the specification does not require
an implementer to use ECDAA and also allows the use of the private attestation key
of the security token. In combination with a centralized attestation CA, this can
de-crease the user’s anonymity and break the principle of the unlinkability between
users and RPs.

6.4.2 Mitigations

As mitigations against theoretical security threats, the following changes should be
taken into account for future revisions of the Web Authentication API. For example,
even when the standard does not specify which RNG has to be used, an implementer
of such a cryptographic API should always know the danger of potential lack of
randomness when not using a CSPRNG.

The Bleichenbacher attack and padding oracle can be avoided by not implementing
the RSA PKCS#1 v1.5 padding requirement, although this is a violation of the
specification. Additionally, when, for instance, the RP does not implement the
API themselves, they have control over the public key credential parameters array

211See Ble98; See Bal+19, Chapter 11.3.
212See KB16, p. 562.
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(pubKeyCredParams) specified in the registration ceremony. Omitting the identifier
for the RSA PKCS#1 v1.5 padding ensures that the key material is generated with
a different algorithm.

Regarding the reduced security against the ECDLP, the specification needs to be
updated. A definition of different ECs can mitigate against an increased risk of a
successful attack against the curve.

It has to be highlighted that all these mitigations are based on theoretical vulner-
abilities and that all the security threats can be solved on a protocol level, i.e., by
updating the specification. As further versions of the Web Authentication API are
in development, these recommendations are and can being taken into account for
updated versions of the specification.

6.5 Comparison with Other Multi-Factor Authentications

Because the Web Authentication API is an evolution of the U2F protocol, the com-
parison of the Web Authentication API extends the comparison of U2F to other
MFA solutions. The essential advantage of the Web Authentication API in contrast
to OTPs is built-in phishing resistance. The specifications of the FIDO2 project set
requirements for the protection against phishing attacks by verifying the RP. This
solves one of the biggest threats in other MFA solutions.

In contrast to the U2F protocol, the Web Authentication API enables the possibility
to use a platform, i.e., built-in, authenticators. This greatly enhances the usability
and simplicity for the end user by enabling already learned authentication flows,
such as unlocking a device with a fingerprint for the registration and login on the
web. Built-in authenticators can, additionally, enable protection by biometrics. This
is possible due to prior works of, e.g., the UAF.

However, the current hurdles of the Web Authentication API are the missing in-
teroperability of different transport protocols and the lack of web browser support
for Internet Explorer, iOS, and many Android web browsers. In contrast, OTPs
work in these web browsers, too, and do not require an update of the web browser.
Also, the user is advised to keep a backup authenticator in case of theft or loss of
their primary authenticator, but this essential aspect is not well highlighted and
advertised. Nonetheless, this behavior is identical to OTP, where the user can save
backup codes to prevent an account lockout.213

213See SMJ16, p. 36.
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Additionally, the Web Authentication API cannot protect against an account takeover
if the system itself is, for example, infected by a malware. Malware is still able to
steal a user’s session, which can lead to further attacks. Out of scope for the Web
Authentication API is transportation, which is defined by the CTAP. Malware can
access the Bluetooth or USB interfaces and intercept the transmissions. However,
the private key material never leaves the authenticator. As long as the secure storage
of the authenticator is tamper-resistant, the private keys are not at risk. In contrast,
malware for smartphones might be able to steal the secret used to generate OTPs
if it is not stored securely.

An unweighted fact is the current rate of adaption. Since the Web Authentication
API is certified since March 2019, very few services, have implemented the API —
in comparison with MFA solutions, such as OTPs and RSA SecurID, that are in use
for five to ten years.214

Regardless, the Web Authentication API has the potential to obsolete the necessity
of a second-factor at all by replacing traditional passwords with public-key cryptog-
raphy that is secure, unique, and phishing resistant for every RP the user registers
with. Moreover, the user does not need to worry about remembering passwords
anymore because they can use their biometrics to unlock, for instance, a platform
authenticator. No other introduced MFA solution has the potential to achieve the
same.

214See Yub.
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7 Conclusion and Outlook

This thesis started with a citation that highlighted that passwords are not suitable
for secure authentication on the web anymore. The reader has been introduced into
the fundamental methods and concepts of authentication to prove this statement.
The knowledge-based method of authentication in the form of passwords is the most
common method of authentication on the internet. Further, but less used methods of
authentication are, for example, possession and biometrics. Moreover, for instance,
the time or location can also be used to authenticate a user. Additionally, the
building blocks for the UAF, the attestation and challenge-response authentication
have been explained, followed by the first example of passwordless authentication.

Thereupon, each of the authentication methods has been analyzed regarding their
security. Chapter 3 showed that knowledge-based authentication exposes significant
threats. Since the human brain has difficulties remembering the different passwords,
the user re-uses them, chooses simple passwords and variants, or stores them some-
where in plaintext. Moreover, some service providers only hash passwords without
salting or peppering them. It increases the chances of a successful brute-force or
dictionary attack in the case of a breached database. However, even physical pos-
session is not safe against theft, loss, copies, or damages and therefore cannot be
used as a replacement for knowledge-based authentication. Additionally, biometrics
is more expensive to use and does not protect against an impersonation, either.
Further, the initialization and transmission of authentication are subject to MITM
attacks, albeit the communication uses a secure channel. This reinforces the thesis
that additional security measures need to be employed.

As a countermeasure to protect a user’s account even in case of leaked, hacked,
or reversed credentials from a hash, different MFA solutions have been introduced.
Instead of relying on one factor, a user has to provide two or more distinct factors
authentication. An example of an authentication method, besides passwords, is the
OTP. It is an (alpha)numerical password that is only valid once. In order to generate
the next password, based on the time or a counter, both parties need to possess a
shared secret. Alternatively, the RP calculates the OTP and sends it to the client.
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However, both the transmission of the OTP and the generation contain potential
weaknesses. The transmission via SMS or unencrypted e-mails can be eavesdropped
or phished. The SS7 network is not secure enough for the transmission of confidential
information. Further, relying on third-party providers for the transmission increases
the attack surface for malicious insiders, social engineering, or VCFAs. Nonetheless,
the generation of the OTP on the client device can be intercepted by a malware,
too.

Another concept to achieve MFA is the use of the U2F protocol. In contrary to the
OTP, this authentication relies on the public-key cryptography that is handled by
dedicated security tokens. They provide resistance against phishing since the web
browser verifies the origin the client communicates with. Therefore, it takes this
task off the user’s duty. While the security in comparison with OTPs is increased,
the usability is not. Requiring the user to purchase a dedicated piece of hardware
and the difference of ports a computer and mobile phone has, hinder interoperability
and ease of use. Additionally, not all OSs implement all the transport protocols.
Further, only a few web browsers support U2F.

As an evolution of the U2F protocol, a central part of this thesis was the introduction
of the Web Authentication API. By keeping the same secure concept of public-key
cryptography that is abstracted from the user, the phishing resistance is ensured,
too. A key difference and advancement are the division into two protocols. The
low-level CTAP defines the communication between the web browser (client) and
the token and the Web Authentication API defines the high-level JS API. Further-
more, the Web Authentication API does not require the token to be an external,
i.e., roaming, authenticator. Instead, it can be a built-in platform authenticator.
This enables the user to utilize already known and learned techniques, such as using
their fingerprint sensor. Likewise, the Web Authentication API allows passwordless
registration and authentication, which in contrast, the U2F protocol did not allow.
Given the fact that W3C and ITU standardized the protocols, the adoption rate of
the API is improved because the web browser vendors usually follow the recommen-
dations and implement the functionality in a manageable time frame. The outlined
security threats the Web Authentication API faces are all of a theoretical nature,
as no known and no successful exploitation of vulnerabilities exist. Future revisions
of the specification can further clarify vague sections or introduce a new EC for the
key material.
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Additionally, the Web Authentication API was still in development and only a W3C
draft215 while finding the topic of this thesis, and the API is only standardized
since March 2019. This highlights the relevance of research on this topic. At the
beginning of writing this thesis, Safari had only limited, opt-in support for the
Web Authentication API, and iOS had no working solution at all. During the
development of this work, Yubico in partnership with Brave announced and released
a new variant of the YubiKey series to support iOS. Moreover, while writing this
thesis, Apple released the stable version of Safari 13 with support for the Web
Authentication API and Firefox for Android added support for the API, too. This
rapid development further strengthens the interest in this topic and the need to
replace passwords.

The questions that were defined at the beginning of this thesis in Section 1.2, such as
the threats of not using MFA, problems that result from weak and re-used passwords,
but also the question of whether MFA can be made secure, have been answered.

Since the thesis focused on the use of MFA solutions on the web, but at the same
time delimitated concepts such as OpenID Connect, OAuth 2.0 and SSO, further
research can be done on these topics. For instance, SSO is an essential factor in
enterprises, often used in conjunction with services and protocols such as Lightweight
Directory Access Protocol (LDAP) or Active Directory (AD) from Microsoft. It has
yet to be researched, whether the Web Authentication API is combinable with SSO
providers.

In the consumer section, OAuth plays a relevant aspect as, e.g., Google, Facebook,
or Microsoft allow the registration on a website with the account a user has on their
site registered. Most recently, Apple announced support for OAuth with the Apple
ID, too. A matter to clarify and study in this regard is the competition between the
Web Authentication API and OAuth. In particular, the privacy aspect is interesting
because the providing party knows on which websites the user registered on with
their account. This allows extensive user tracking.216

On the one hand, emerging technologies such as IoT and Industry 4.0 are becoming
more and more connected, but on the other hand, they increase the attack surface
drastically. An open question for continued research is if the Web Authentication
API is suitable for these areas because machines and computers autonomously per-
form authentication without user interaction. Further, it has to be evaluated if these

215The W3C standardization process can be viewed in the Section A.1
216See Sch19a, p. 18; See Wal16, p. 4.
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(low-power computing) devices are capable of implementing both secure channels,
such as TLS and calculations on ECs.

All in all, this thesis showed that internet users and their accounts are at risk because
passwords are not suited for secure authentication in the way they are currently used.
Weak passwords, password re-usage, and data breaches expose a constant threat. It
is crucial to sensitize the user that these threats affect everyone. Moreover, existing
MFA solutions are prone to phishing attacks since the way of transmission via SMS
and e-mail is insecure and can be eavesdropped. Additionally, they are not resistant
to social engineering attacks or malware on a user’s device. U2F and in particular
the Web Authentication API are the only solutions to protect against phishing.
While the Web Authentication API has the potential to (finally) replace passwords,
it is not yet usable enough in all web browsers across different OSs. If the browser
vendors implement the missing transportation protocols (BLE and NFC) and if
Apple adds support on iOS, this matter is solved though. A topic that is not well
advertised, nor explained is the advice to use at least two authenticators to possess
a backup method. With the help of the web browser vendors and a growing rate of
adoption, the Web Authentication API is on the right way towards an internet with
strong, secure, and simple authentication — even without passwords.
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Figure A.1: W3C standardization process217
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A.2 Web Browser Usage Statistics for August 2019

Figure A.2: Web Browser Usage Statistics for August 2019218

218Source Staa.

XXXV



Appendix A. Appendix

Figure A.3: Desktop Web Browser Usage Statistics for August 2019219

219Source Stab.

XXXVI



Appendix B. Annex

B Annex

B.1 Contents of the USB Flash Drive

/
Live Demo

Brave_Dongle_iPhone_6.MOV
Telekom_Puls_OTG_1.jpg
Telekom_Puls_OTG_2.jpg
iPhone_6_Dongle.jpg
iPhone_7_YubiKey_5Ci.jpg
Chrome_OTG_Android_9.MOV
Brave_YubiKey_5Ci_iPhone_7.MOV

Web Authentication API Support Test
Android

Firefox
Lightning
Puffin
Mint
Firefox Klar
Edge
Brave
UC
Samsung Internet
460
Firefox Preview
Chrome
Yandex
Opera
CM
Stock Browser (Jelly)
Opera Touch
Pure
Opera mini
QQ

iOS
Brave

KaiOS
Internet Sources

XXXVII



Declaration of Academic Integrity

Declaration of Academic Integrity

Hereby, I declare that I have composed the presented master’s thesis independently
on my own and without any other resources than the ones indicated. All thoughts
taken directly or indirectly from external sources are adequatley denoted as such.

Hamburg, September 30, 2019

Tim Brust

XXXVIII



Theses

1. The status quo of password usage is problematic. Often chosen passwords are
re-used and weak.

2. Humans are the weakest link in a phishing scenario. Social engineering attacks
can even target the service provider.

3. Multi-factor authentication is not phishing resistant, both the secret when
setting it up and the second factor can be phished or stolen. Software solutions
are more probable to be phished.

4. The biggest threat to multi-factor authentication is transportation, especially
when using SMS or unencrypted e-mail traffic.

5. Multi-factor authentication can be made phishing resistant, but it requires
more effort to do so by choosing different transportation algorithms.

6. The Web Authentication API is not yet usable enough nor widely adopted.
This is, in particular true, for iOS and the Internet Explorer.

7. The user needs to be educated about passwords, the risk of password re-use,
phishing, and how to protect themselves against typical internet threats.
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