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Scope (Aufgabenstellung)

The scope of the thesis is to develop a system on a technical level for cloud-based
Continuous Integration/Continuous Deployment (CI/CD) processes, which secures
these CI/CD processes against Dependency Confusion Attack (DCA)s. This is to
be validated against a real-world attack on a cloud-based CI/CD chain. The CI/CD
chain is to be structured analogously to the real situation in which the system is to
be deployed. The intention is to develop a system that can be realistically used to
defend against DCAs and thus provides added value in terms of supply chain security.
At the same time, the system should be designed in such a way that developers do
not experience any losses in productivity or development ergonomics as a result of
its use. In the preparation of the master thesis, the topic of Software Supply Chain
Attack (SSCA), as which DCAs are to be classified, cannot realistically be fully
addressed due to the sheer number of possible attack vectors.
It is posited that no generalist approach will be applied to the development of the
prevention system. The objective is to narrow down the problem for the target
application, analyze it, and develop the system based on the results of this analysis.
Furthermore, although DCAs exist within the larger context of SSCAs, the objective
of the system to be developed relates solely to the prevention of DCAs. These
are to be characterized and contextualized to make it possible to develop effective
preventive methods. Ultimately, the system will be based on existing technologies
and prevention concepts. The aspect that will be originated in the scope of this
thesis will be the prevention system in the overall target system, which, in addition
to the technical functionality of the prevention system, also includes aspects of
integrability and usability.



Kurzfassung

Kurzfassung

Die Software-Lieferkette ist ein wichtiger Bestandteil der modernen Softwareentwick-
lung und -distribution. Ähnlich “physischer” Lieferketten stellt eine Unterbrechung
der Software-Lieferkette ein großes Risiko für Softwarehersteller und -verbraucher
dar. Der “Dependency Confusion”-Angriff beschreibt einen Angriff auf die Software-
Lieferkette über Software-Paketmanager auf der Ebene der ”Zulieferer”, wobei Soft-
warepackages in öffentlichen Package-Registries verwendet werden, welche sich als
privat genutzte Packages ausgeben und bösartige Nutzdaten enthalten. Vor allem in
automatisierten Systemen haben sich die bestehenden statischen und dynamischen
Analysetechniken als ineffektiv oder ineffizient erwiesen, um diesen Angriff zu ver-
hindern. In dieser Thesis wird ein neuartiger Ansatz zur Identifizierung und Block-
ierung dieser gefälschten Packages entwickelt, der auf Angriffsmerkmalen basiert, die
auf der Grundlage einer Analyse des Angriffs entwickelt wurden. Der Ansatz nutzt
Blockchain-Technologie, um ein System zur Katalogisierung und Überprüfung der
Dateiintegritätsinformationen privater Packages bereitzustellen, um gefälschte Pack-
ages zu erkennen und zu verhindern, dass diese das Build-System kontaminieren.
Das System wird für die Integration und Verwendung mit der bestehenden CI/CD-
Infrastruktur evaluiert, und es wird festgestellt, dass der “Dependency Confusion”-
Angriff durch das System wirksam verhindert werden kann, während eine effiziente
Nachrüstung in bestehende CI/CD-Systeme möglich ist.

Abstract

The software supply chain is a critical part of modern software development and
distribution. Similar to physical supply chains, disruption in the software supply
chain poses major risks to software manufacturers and consumers. The “Dependency
Confusion” attack describes an attack on the software supply chain via software
package managers at the “supplier” level, using software packages on public package
registries impersonating privately used packages and containing malicious payloads.
Especially within automated CI/CD systems, existing static and dynamic analysis
techniques proved to be ineffective or inefficient to prevent this attack. This thesis
proposes a novel approach to identify and block these impostor packages, based on
attack characteristics developed based on an analysis of the attack. The proposed
approach uses blockchain technology to provide a system to catalogue and verify file
integrity information of private packages to recognize impostors, and prevent these
malicious packages from contaminating the build system. The proposed system is
evaluated for integration and use with existing CI/CD infrastructure, and is found to
be effective at preventing the “Dependency Confusion” Attack, while being efficiently
retrofittable to existing CI/CD systems.
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Chapter 1. Introduction

1 Introduction

1.1 Motivation

Almost every part of our daily lives in 2022 is thoroughly saturated with some degree
of interaction with software. This extends from our personal interactions with all
manner of appliances, or the ever present smartphones, through to our professional
lives. There we interact closely with largely digital, software based processes, that
shape the corporate world into a much more efficient and profitable one compared
to the pre-digital age. These partly very complex processes themselves mandate
similarly complex processes to manufacture the underlying software products. This
has led — analogously to comparatively complex products such as automobiles — to
a veritable software supply chain. Many parties are involved in the manufacturing
of software, adding risk factors to the different stages of the software supply chain,
which have to be managed in order to supply a safely usable end product to the
consumer.
An important part of this software supply chain is the sourcing of third-party soft-
ware (including libraries) to help outsource common problems and increase software
development efficiency. The components distributed and consumed as such become
part of the supply chain of software products. These tools and other third-party
software are distributed by so-called “package management systems”. Many of these
rely on public package sources, where everybody can contribute. Package manage-
ment systems can also be used “privately” in a software production environment,
distributing vendor-specific packages. Solutions like these are especially important
in systems that build and distribute software automatically, so called CI/CD envi-
ronments. These circumstances introduce a number of risk factors along with the
desired improvements to development speed.
These risks can be both of a financial dimension, but in case of attacks on critical
infrastructure, could also potentially endanger lives. Securing the Software Supply
Chain (SSC) is an absolute necessity, be it to prevent monetary damages, or to
prevent damages to, in the worst case, the well-being of actual people.
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Chapter 1. Introduction

1.2 Thesis Contribution

In the scope of this thesis, one of these risk factors, the so called DCA, will be an-
alyzed, quantified and characterized. The goal is to understand this attack, which
is an attack in the basic stages of a SSC, and develop a system, in the form of a
software module, which can prevent these kinds of attacks in a cloud-based CI/CD
environment. To develop such a system, DCA will be put in the context of the
SSC, then characterized through quantitative analysis of past attacks. These char-
acteristics will be used to provide a clear definition of the attack and also serve to
develop the aforementioned system. Finally, the system will be evaluated against
such an attack exhibiting these characteristics and a conclusion drawn, whether the
approach presented can be considered an effective mitigation technique.

1.3 Limitations

This thesis will focus on the development of a system to defend against a specific kind
of software supply chain attack, Dependency Confusion. While the general concept
of the software supply chain will be explained, and a wider gamut of software supply
chain attacks will be used to provide context, this thesis does not posit to provide
solutions to defend against any other attack than ones using Dependency Confusion.
Additionally, this thesis will, especially in the practical part, focus on a technology
stack comprising mainly JavaScript/TypeScript, node.js and npm. This is done
to allow a focus on a practical solution to a real problem, which would not be
achievable with a more generalist approach for a broader selection of technologies,
in which, considering the formal limitations of this thesis, either practical solutions
or theoretical groundwork would have to be sacrificed. The technologies used were
selected on the basis of familiarity and popularity, and especially on the concrete
use case that spurred the work on this thesis.

2



Chapter 2. Background

2 Background

2.1 The Software Supply Chain

2.1.1 What is the Software Supply Chain?

To understand the concept of the Software Supply Chain, it is necessary to under-
stand the concept of a supply chain in a more general sense. The Supply Chain can
be defined as a “network of organizations that are involved, through upstream and
downstream linkages, in the different processes and activities that produce value in
the form of products and services in the hands of the ultimate consumer” [1, p. 17].
In exemplary terms, a paper manufacturer might be a part of a supply chain, which
possesses upstream members in the form of logging companies and wood mills, and
downstream members such as office suppliers and printing enterprises.
There is strong co-dependence exhibited in the relationships of these members of
the supply chain, and the availability of the end-product is dependent on the coop-
eration between members. These supply chains are characterized and, importantly,
separated from vertical integration within a single organization, by containing two
or more legally separate entities contributing to the release of an end-product. The
supply chain is broadly divisible into four distinct phases (Figure 1):

Supply materials

or sub-assemblies

Suppliers

Assemble or

process materials

or sub-assemblies

Manufacturers

Intermediary

between Customer

and Manufacturer

Distributors

Buy and consume

processed goods

Customers

Figure 1: The physical supply chain, from [2, p. 4]

This general view of supply chains maps almost fully into the world of software de-
velopment and distribution. “Modern” Software Development is far from the cliché
of a lone person coding away in a basement [3, p. 566]. Modern enterprise processes,
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Chapter 2. Background

complex, digitized and including huge amounts of data, make complex software nec-
essary. This kind of software is developed by large, interdisciplinary teams.
Additionally, software development itself often relies on software modules or libraries
developed by third parties [4, p. 2]. A basic example would be the use of third-party
compilers for code - when developing in a language that has compilers available, it
would be added cost and complexity to develop one’s own, compared to using a
third party tool, such as GCC1. This extends to libraries that streamline common
tasks such as database interactions, logging and monitoring, and many more. Ac-
cording to Sonatype’s Report “2021 State of the Software Supply Chain” [5], year
over year (YoY) growth in demand of open source packages (such as libraries and
third party tools mentioned above) reached 73% in 2021, while supply YoY growth
reached 20%. In numbers, Sonatype reports over 2.2 trillion requests for open source
packages. This parallels real-life physical supply chains - there are suppliers that
supply materials and sub-assemblies (e.g. Libraries and packages) that make up an
integral part of the end-product. Therefore, the development pipeline of modern
software can be considered as a form of supply chain. This is referred to as the
“Software Supply Chain”. Putting it into context with Kilger et al.’s Four Phases,
the Software Supply Chain can be broken down and put into the context of physical
Supply Chain as follows (Table 1):

Table 1: Comparing physical to software supply chain components

Physical Supply Chain Compo-
nent

Software

OEMs, Raw Material
Producers

Suppliers Library-, Package Devel-
opers

Product Manufacturers Manufacturers Product Development
Teams/Systems

Resellers, Retailers Distributors CI/CD Systems, Digital
Storefronts

Consumers Customers End-Users

Having established the fundamental parallels between a physical supply chain and
a software supply chain, a look at the risk profile of both physical and software
supply chain is needed. Specifically, the risks at the supplier level up to the manu-
facturer level will be examined more closely. Christopher [1, pp. 236-237] describes
increasing risks to physical supply chains in reducing supplier numbers. This “sin-
gle sourcing” principle, where one supplier is the sole supplier for an item crucial

1https://gcc.gnu.org/
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Chapter 2. Background

to the manufacture of the end product, poses a significant risk of disruption to the
supply chain as a whole. This principle is especially applicable to the software sup-
ply chain, since third-party suppliers of libraries and packages (further detailed in
subsection 2.2.1) are vital to the development of complex software projects [4, p.
2]. In the following chapters, compromised “suppliers” in the form of third-party
packages and libraries will be further explored to ascertain the risks they pose to
manufacturers and consumers of software end-products.
The Cybersecurity and Infrastructure Security Agency (CISA) further defines a six-
phase Information and Communications Technology (ICT) supply chain lifecycle [6,
p. 3], which can be used to detail the typical Software Supply Chain (SSC) and
risks pertaining to each of the phases in Table 2.

Table 2: ICT supply chain lifecycle, adapted from [6, p. 3]

No. Phase Risks
1 Design Components can be designed with backdoors or mali-

cious functions by third parties or embedded malicious
actors

2 Develop-
ment and
Production

Malicious Components can be introduced in Soft- and
Hardware in manufacturing, assembly and product de-
velopment

3 Distribu-
tion

Products and Components can be modified in transport
to provide malicious functions

4 Acquisition
and De-
ployment

Malicious actors may insert vulnerabilities in acquisi-
tion and installation

5 Mainte-
nance

Maintenance may allow malicious actors to access and
modify components

6 Disposal Improperly disposed items may contain sensitive data
and can be accessed after disposal

SSCs are prevalent enough, and pose enough of a target, that an Executive Order
by President of the United States Joe Biden in February 2021, to secure the United
States’ supply chains, explicitly included SSC2. This was followed by a publication
of the CISA in April, detailing defensive measures against Software Supply Chain
Attack (SSCA) [6].

2https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-
americas-supply-chains/
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Chapter 2. Background

2.1.2 Risks in Modern Software Supply Chain Environments

According to Sonatype’s “2021 State of the Software Supply Chain” [5], SSCAs
experienced an increase of 650% in 2021 alone, an increase of 220% over 2020s
430% increase. In numbers, the global supply of open source packages in popular
package managers’ registries (for JavaScript, Python, Java and .NET) combined to
37,451,682 components and packages [5, p. 9]. Of the top 10% of these, 29% con-
tained at least one known security vulnerability. An emerging trend also indicates,
that these vulnerabilities are not only included due accidental inclusion of vulnerable
code, but by malicious actors actively implanting vulnerabilities in these packages
[5, p. 11]. This leads to benefits for the attackers, notably being able to exploit
vulnerabilities not only once reported, but immediately after the affected software
has been released into the wild.
These vulnerabilities are compounded by code reuse. The practice of reuse is not
problematic in itself, since there are measurable benefits to not “reinventing the
wheel” in most cases, similar to using standard parts such as standardized bolts in
traditional supply chains [4, p. 2]. To be able to safely use these standard parts
however, it must be ensured that the parts are produced to the standard they claim
to follow, so that products aren’t subjected to failure caused by inadequate com-
ponents. Like traditional manufacturing, code manufacturers therefore have to be
able to validate software components supplied to them, such that the end product
is not affected in its functionality or reliability by inferior components from suppli-
ers [7]. The MITRE ATT&CK Framework specifies “Supply Chain Compromise:
Compromise Software Dependencies and Development Tools” Attacks under the ID
T1195.0013. The MITRE ATT&CK Framework’s definition is very broad, and its
recommendations also lack all but very basic mitigation methods, citing Software
Updates and Vulnerability Scanning.
A large amount of basic risks toward SSC have also previously been discussed by
Ohm et al. in [8]. Ohm et al. discuss several attack patterns typical to supply chain
attacks, and offer a quantitative analysis of known compromised packages sourced
from different package management systems. This paper does not give practical
advice on mitigating such attacks. The Dependency Confusion Attack (DCA) falls
under the category introduced by the MITRE ATT&CK Framework, and by Ohm
et al. as “Injection of Malicious Packages” [8, pp. 34/35], and will be explored fur-
ther in the following chapters, first giving background on the technical framework in
which they are executed, and then exploring options of mitigation and prevention.

3https://attack.mitre.org/techniques/T1195/001/
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Open Source Packages

Often, packages, or modules, as briefly discussed above, are distributed on an Open
Source basis. For example, node.js itself is an open source project4, together with
npm, its package manager5. According to Ohm et al. [8, p. 27/28], the software
lifecycle of these Open Source projects is typically structured as depicted in Figure 2.

Configure

Configure and Trigger

Commit and Create

Pull Request

Maintainer

Create
Pull Request

Contributor

Clone

Version Control System
(f.ex. Git)

Pull

Distribution Platform (f.ex.
npm)Publish

Build System

Build ProcessCodebase

Figure 2: Open Source project development environment, adapted from [8, p. 28]

This means that there are typically two kinds of members to Open Source projects
that have more or less direct influence on the codebase of the respective project.
Maintainers have more broadly spread responsibilities, such as configuring and oth-
erwise directly interacting with the build system, and thus also have control over
the publication of the resulting binaries. Maintainers also have the power to create
Pull Requests, which are used to alter the codebase of the project. The other kind of
member, the Contributor, can only create Pull Requests. If a hypothetical attacker
can assume any of these roles, he will have enough leverage to execute a number of
attacks, either by injecting malicious code into the codebase and having the relevant
Pull Request approved, or by gaining access as a Maintainer and manipulating the
build system. According to Ohm et al. [8, p. 29], injecting malicious code into
the codebase and having the Pull Request approved may either be accomplished by
disguising the contribution as a bug fix or a useful feature [9] and getting it ap-
proved via a legitimate third-party (a Maintainer of the System), or by obtaining
insufficiently secured credentials, such as API Keys, and approving it themselves.

4https://github.com/nodejs/node
5https://github.com/npm
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Chapter 2. Background

The latter, as stated by Ohm et al. [8, p. 29] in reference to [10], may also be
accomplished by social engineering.
Once the package of an open source component has been compromised, it will spread
the vulnerability rapidly to consumers of said package. As seen in Table 3, package
dependencies in node package manager (npm) (as an example, this functionality also
exists in pip, cargo and others) are often set to be installed at the latest version. In
this case, a newly malicious package would be installed the next time packages are
updated, or the project is initialized (for example in a new environment). With the
spread of projects dependent on open source packages, such a vulnerability would
spread extremely quickly. For reference, in 2020, more than one Trillion open source
packages have been requested from the npm registry, with 2021 projections predict-
ing a 50% YoY growth to 1.5 Trillion [5, p. 8].

2.2 Technical Background

2.2.1 Package Managers

To understand the mechanisms at work, the term “package manager” also has to be
clarified. Package managers in some forms have existed since about 1993 [11], ini-
tially (and still) used for managing programs in the form of packages for Linux-based
systems. These package managers evolved over time to also manage “dependencies”
for those programs. These dependencies are yet other programs or libraries, pro-
viding more functionalities that the programs do not need to implement themselves
[12]. According to the Debian Community, “A package manager keeps track of what
software is installed on your computer, and allows you to easily install new software,
upgrade software to newer versions, or remove software that you previously installed.
As the name suggests, package managers deal with packages: collections of files that
are bundled together and can be installed and removed as a group.” [13].
These Operating System (OS)-level Package Managers led to systems based in soft-
ware development environments. Today, many programming language development
platforms ship with a package manager [14] (npm6 for node.js, cargo7 for rust,
pip8 for python, rubyGems9 for ruby, and many more). These package managers

6https://www.npmjs.com/
7https://doc.rust-lang.org/stable/cargo/
8https://pypi.org/project/pip/
9https://rubygems.org/
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Chapter 2. Background

serve a similar purpose to the OS-level package managers, with similar dependency-
management and automated installation of needed dependencies, but instead of
already compiled binaries (programs), they serve modules that can be used with the
respective development environment [14]. Very common are “helper”-modules that
provide convenience while programming (compare for example lodash10), modules
that ease interfacing with other systems (compare different clients for DBMS1112),
or modules that provide abstractions over other services and implement boilerplate
for the user. Software Development Kit (SDK)s for Cloud-Platforms usually fall
within the latter category, for example the AWS-SDK13 or the AWS-CDK14, which
provides abstractions and constructs for developing Infrastructure as Code (IaC). In
2019, the average dependency count of a repository on GitHub was 203, the average
dependency count of open source project numbered 180 [15], meaning an average
project in these repositories consumes functionality from 203 packages pulled from
package management systems. This huge number of dependencies for single projects
provides many attack vectors, especially considering that these dependencies may be
transient, and as such not immediately apparent to the user or even the developer.
This is especially exacerbated by the convenient handling of transient dependencies,
also called peer dependencies, which is done automatically by the package manager
as a core function (see [12]). The developer is not involved in many of these pro-
cesses by default.
These package management system typically consist of the package management
client, used by the developer or Continuous Integration/Continuous Deployment
(CI/CD) system locally, and the package registry, where the client pulls packages
from (compare Figure 3). The registry supplied as a default is usually a public
registry, such as the npm registry15, but can be configured in the package manager
client to privately operated registries16.

Versioning

The packages distributed with package managers are versioned, to enable the auto-
mated version management mentioned above. The versioning system in use across

10https://www.npmjs.com/package/lodash
11https://www.npmjs.com/package/pg
12https://www.npmjs.com/package/mysql
13https://aws.amazon.com/sdk-for-javascript/
14https://aws.amazon.com/cdk/
15https://registry.npmjs.org
16https://docs.npmjs.com/cli/v8/using-npm/registry
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Figure 3: Simplified schematic of package management in software projects

most application package managers is fairly consistent, with npm17, pip18, cargo19

and Bundler (to some extent)20 all using semantic versioning, which is a use case in-
dependent specification for use in versioning software [16]. In Semantic Versioning,
version numbers are divided into three numbers, separated by periods, and option-
ally extended for additional information about metadata and pre-release versions
[16]. The first number denotes a MAJOR version, which can include breaking API
changes, the second number a MINOR version, indicating additional functionality
with backward compatibility, and the third number a PATCH version, includes
such things as backwards compatible bug fixes.

2.2.2 npm

npm is the default package manager for the node.js development environment21.
npm describes the package manager itself (e.g. the program on the user’s machine
that provides the package management functionalities described in subsection 2.2.1)
as well as the associated default package registry22. npm provides software in the
form of modules for node.js projects, or even fully featured programs that use node.js
as a runtime environment23.
npm uses the semantic versioning convention described in section 2.2.1. Dependen-
cies in projects using npm can have their required versions declared in a number of
ways24 (Table 3):
17https://docs.npmjs.com/about-semantic-versioning
18https://py-pkgs.org/07-releasing-versioning.html
19https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
20https://guides.rubygems.org/patterns/#pessimistic-version-constraint
21https://docs.npmjs.com/about-npm
22https://www.npmjs.com/
23https://docs.npmjs.com/about-npm#use-npm-to---
24https://docs.npmjs.com/cli/v6/using-npm/semver#advanced-range-syntax
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Table 3: npm versioning syntax for dependencies

Range Example Description
Fixed 1.2.3 Specifies a fixed version of the dependency. No

version other than 1.2.3 would be matched
Tilde-
Range

~1.2.3 Specifies the most recent PATCH version, thus
1.2.9 would be matched, but 1.3.0 would not

Caret-
Range

^1.2.3 Specifies the most recent MINOR version,
matching for example 1.20.5 but not 2.0.0

x/*-Range 1.2.x or 1.* Specifies to match any part of the version not
replaced by “*” or “x”

Hyphen-
Range

1.2.3-1.2.9 Specifies any version in the declared range

This versioning system is implemented with another npm package called “SemVer”25.
Private Registries: npm can also use package registries apart from the default
one. The registry that is to be used has to implement the “CommonJS Compliant
Package Registry” specification26 [17]. This is either handled by a npm-specific im-
plementation (such as verdaccio27) or a package registry that handles packages for
multiple development environments, such as jFrog Artifactory28 or AWS CodeArti-
fact29. These registries, which are administrated by private parties (for example
companies wishing to distribute their own packages internally) instead of the npm
team, are referred to as “Private Registries”, since they are usually not reachable
for non-members of the parties who own them.

npm package manifest - package.json

Dependencies of a project initialized with npm are stored, with other meta informa-
tion, in the package.json, called the “manifest”, file. The package.json file stores
the following information30:

• name: The name of the project/package

• version: The version of the package, according to semantic versioning sec-
tion 2.2.1

25https://docs.npmjs.com/cli/v6/using-npm/semver
26http://wiki.commonjs.org/wiki/Packages/Registry
27https://verdaccio.org/
28https://jfrog.com/artifactory/
29https://aws.amazon.com/codeartifact/
30https://docs.npmjs.com/creating-a-package-json-file
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• main: The entry point to the module contained in this project/package

• license: The license the project/package is published under

• dependencies: A list of packages this project/package depends on; These
will automatically be installed when this project/package is installed

• files: A list of files and directories that are to be included on publishing the
package. Files and directories not included here will not be published

• scripts: A list of scripts that will be executed over the lifecycle of this package,
see section 2.2.2

In addition to these fields, other information, such as author, operating system
compatibility and contributor information, can be included in the package31 The
packages that are specified in the dependency field will be installed in the versions
referenced there, with respect to possible version ranges specified according to the
syntax detailed in Table 3. This installation is usually started at by executing the
built-in npm install script at the root of the package directory. npm will then pull
the respective versions of the packages from the specified package registry and place
them in the node_modules directory, which is created at the same file system level
that the package.json file resides at. This usually results in a directory structure
similar to the one seen in Figure 4.

/.........................................................project root
node_modules..........................The installed dependencies

lodash.................................an example dependency
index.js................................The entrypoint/main file
package.json...............................The package manifest

Figure 4: npm project directory structure

npm package lockfile - package-lock.json

The package-lock.json file exists to describe the “dependency tree” (combining
the package.json file and the node_modules directory) at a single point in time,
making it reproducible exactly (removing uncertainties in installing dependencies

31https://docs.npmjs.com/cli/v7/configuring-npm/package-json
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as opposed to installing from package.json)32. When installing dependencies from
the package-lock.json file, the exact versions of the dependencies that were in-
stalled when the package-lock.json file was generated will be installed (compare
Listing 1 for an example). (Re)generation of this file occurs whenever package.json
or node_modules is modified by npm32. In addition to the exact version number (no
ranges are supported in package-lock.json), this file includes hashes to verify the
integrity of the installed packages (compare Listing 1). The reproducibility afforded
by using the package-lock.json file makes it ideal for use in automated build en-
vironments, where assurance to an exact replica of a known working state of the
project is needed32. Installation of packages from package-lock.json is facilitated
by invoking the npm ci command.
All these properties make the package-lock.json file ideal for usage in automated
build environments, such as ones within CI Systems (see subsection 2.3.1). The ex-
act reproduction of a “known good” environment (the developer’s) ensures stability
of the build process and a functional application.
However, since package versions are locked to one specific version, this approach
necessitates very detailed care of the build environment. When using one specific
version, all vulnerabilities contained in this version will affect the end product. Us-
ing the lockfile as an installation source will ensure that packages match the exact
version and package contents on the file system match the hashes, but will not ensure
package contents aren’t malicious. Especially when packages need to be upgraded
to close vulnerabilities, using the lockfile makes it necessary to monitor each build
environment.
The npm lockfile also provides the URL of the tarball (archive) of the package on
the registry, which can be queried directly. This URL is contained in the resolved
field of each dependency recorded in the lockfile (compare Listing 1).

32https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
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1 {

2 "node_modules/master−trial−package": {

3 "version": "0.1.1",

4 "resolved": "https://master−registry−domain−365161439830.d.codeartifact.eu−

west−1.amazonaws.com:443/npm/master−registry/master−trial−package/−/

master−trial−package−0.1.1.tgz",

5 "integrity": "sha512−5Vc/6BHE6u3UgKW6xYFWHEhVQSK4wRAVLNDBSMx7

frXQOjuEUsYZsKmhJBk5svVz0HrWjbvul2RlB/L3d9pMxQ==",

6 "peerDependencies": {

7 "aws−cdk−lib": "2.23.0",

8 "constructs": "^10.0.0"

9 }

10 }

11 }

Listing 1: An Example of a Dependency entry in a lockfile

npm scopes

In addition to package names, npm packages can also have a “scope” defined. These
scopes are displayed prepended to the package name and separated from it by a
slash. Additionally, the scope name itself is prepended by an “@” symbol. A so-
called “scoped” package will look like @scope-name/package-name33. Scopes in
npm serve to group packages together, and scope names can be claimed, much like
package names. Scoped and unscoped packages are compatible, such that scoped
packages can depend on unscoped ones and vice versa. Since no one but the owner
of the scope can claim package names within the scope, scoping or claiming a scope
is a recommended way for organizations to claim their packages33. Scoped packages
can also be associated with specific registry. This means that when a scoped package
is required by a project, if the scope is associated with a private package registry, the
npm client will pull the scoped packages from the specified registry, while pulling un-
scoped or differently scoped packages from another registry33 (possibly the default,
public one.)

Version Management

In regard to the versioning system introduced in Table 3, there are certain behav-
iors package registries, default to. In the case of a package being available on a

33https://docs.npmjs.com/cli/v8/using-npm/scope
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private registry and a public registry, the packages’ version numbers will be taken
into consideration, and checked against the versions specified in the manifest. If the
developer specified the package in his package.json dependency list as internal-
package@^1.3.4, the package registry holding the highest version applicable in the
“caret” range specified here (see Table 3), would be chosen to supply that version.
For example, if the private registry held the package internal-package@1.3.4, and
the public registry held the package internal-package@1.5.0, the package from
the public registry would be chosen. This happens, if the private registry mirrors
the package index from the public registry and can therefore supply a higher version
than it holds internally.
The popular package management solution jFrog Artifactory34 provided this be-
havior without the possibility to change it up until Artifactory version 7.16.3. If
a version for a ”latest version” query was found on a public repository, that was
higher than the one found on an internal one, the higher version would always be
installed [18]. Since version 7.16.3, jFrog Artifactory allows users to select “priority
resolution” for package repositories, making these preferred sources and only pulling
packages from there [18]. This is not, however, default behavior.
These vulnerabilities in the installation of newer versions are made more dangerous
by using certain features in package managers other than npm, such as the --extra-
index-url flag in pip. Using this, pip would, even configured for a private package
registry, always install packages with higher numbers, if found on the public registry
index. Birsan managed to find this used in production code at major companies, by
simply searching for the string --extra-index-url on public repositories hosted on
GitHub [19].

npm Scripts

During the lifecycle of a package, from publish through installation, to starting or
stopping (in case the package represents a standalone program), npm offers the
package developer a multitude of possibilities to execute scripts in user space. The
lifecycle of a package is split into phases represented by keywords, for example the
“install” phase, representing the stage where a package has been pulled from the
registry and placed in a project structure. Scripts can be executed by npm before,
during, and after these phases35. This is accomplished by specifying the phase name

34https://jfrog.com/artifactory/
35https://docs.npmjs.com/cli/v8/using-npm/scripts
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and the script name in the package’s manifest (package.json) under the scripts
property, for example:

1 {

2 "scripts": {

3 "preinstall": "{{ executes BEFORE the `install` script }}",

4 "install": "{{ run command to install package }}",

5 "postinstall": "{{ executes AFTER `install` script }}"

6 }

7 }

Listing 2: scripts in npm package manifest

The scripts referenced above will be executed by npm in relation to the “install”
phase of the package in whose package.json the scripts are referenced. These
scripts will run in user space, since, as previously discussed in section 2.2.2, NodeJS
does not offer a sandboxing feature, and with the level of privilege the NodeJS
process itself possesses [20, pp. 996/997]. It should be noted, that npm scripts
can be prevented from running by appending the command --ignore-scripts to
the package installation command. The --ignore-scripts command can also be
appended to the project-specific .npmrc file or added to the global npm configura-
tion36. This will, however, prevent some packages from functioning or functioning
correctly, since some tools depend on installation scripts to set up their runtime
environment35.

Publishing npm Packages

Once a package has been developed, the author can publish this package to a pack-
age registry of his choosing with the npm publish command. By default, this is
the npm public registry (https://registry.npmjs.org)37. Depending on the en-
vironment used (for example in the case of developing in TypeScript), publishable
files must be generated. The package files must be compatible with the CommonJS
registry specification38.
The files published are based on the manifest (package.json), where a whitelist
of files can be specified under the files property (see also section 2.2.2) and the

36https://docs.npmjs.com/cli/v8/configuring-npm/npmrc
37https://docs.npmjs.com/cli/v8/commands/npm-publish
38https://wiki.commonjs.org/wiki/Packages/Registry#Packages.2FRegistry
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.npmignore and .gitignore files, which include a blacklist of files not to be pub-
lished. The files in the package directory are packed into a gzipped tarball39 and
both a SHA1- and a SHA51240-based checksum generated to enable verification of
the integrity of the archive37. These checksums, together with the tarball, are up-
loaded to the specified package registry and associated with the package name and
version specified in the package manifest. The package can then be consumed by
users that have access to the registry.

SSC risks specific to npm

npm brings with it a number of risks to the SSC, some of which are specific to npm.
Zimmermann et al. [20] for example, determined in 2019 that up to 40% of packages
in the public npm registry depended on known vulnerable code, either directly or
through transitive dependencies. They propose, among other reasons, that this issue
is caused by heavy code reuse, which is much more prevalent in the npm ecosystem,
as opposed to, for example, the Java/maven ecosystem [20, p. 996]. The risks these
vulnerabilities introduce into systems is amplified by a lack of privilege separation.
All processes, including dependency-own run with the same privilege as the main
application [20, pp. 996/997], additionally compounded by the fact that NodeJS
as the runtime itself does not offer any kind of sandboxing feature. Pfretzschner
and Othmane [21] describe several methods a compromised dependency could use
to attack from its node.js environment. Notably, one such method is the leakage
of secrets stored in globally accessible variables [21, p. 3], for example security
credentials in AWS Lambda, which are often stored in environment variables41.
This aligns with Ohm et al.’s findings that overall, most malicious packages primary
aim is data exfiltration [8, pp. 35/36].

2.2.3 Smart Contracts and Blockchain

According to the German Federal Financial Supervisory Authority, Blockchains can
be defined as “[...] tamper-proof distributed data structures in which transactions
are recorded in chronological order and mapped in an understandable and unalter-
able form without any centralized control” [22]. This is congruent with the definition

39Tar: tape archive - A UNIX archive format, with file archives colloquially referred to as ‘tarball’, as in a ‘ball’ of
files stuck together with the homonymous tar (bitumen)

40Only on lockfiles newer than NodeJS v8.x.x, and depending on the OS: https://github.com/npm/npm/issues/
16938

41https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html#env_encrypt
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in the white paper of the primordial, blockchain-based, cryptocurrency Bitcoin [23].
The transactions referred to in the quote above describe data structures that contain
a recipient, a sender, (optionally) data and, with most blockchains, an amount of
cryptocurrency [24, 23]. Blockchains use consensus algorithms to ensure that only
valid transactions are recorded, and malicious ones are rejected [24]. These transac-
tions and the data within are recorded in a data structure known as a Merkle tree.
The so-called Blocks that make up a Blockchain contain the root of these Merkle
trees, as well as a timestamp and a hash of the previous block, similar to a linked list
[24]. These Blocks are shared across a network of nodes and are of fixed length. This
results in a distributed system of nodes, of which every one carries all information
about these transactions within them. The records of these transactions on a node
are termed a “ledger” [25, p. 35], making the network of nodes all carrying ledgers
a distributed ledger.
Additionally, the aforementioned consensus systems ensure that integrity (every
ledger must represent the same state of the system, e.g. contain the same trans-
actions) is kept intact across all nodes in the network [26]. The consensus system
provides a way to vote on decisions, a decision taken requiring absolute majority
(currently, the consensus system for both Bitcoin and Ethereum is Proof-of-Work
(PoW), based on solving mathematical problems [26]). This makes the data con-
tained within these transactions on the blockchain highly resistant to manipulation.
Specifically, this means manipulating the data contained within the ledger retroac-
tively in this consensus-based system would necessitate control of more than 50% of
the nodes in the system [26], in order to gain consensus voting majority and have
one’s own modified version of the ledger accepted as a correct one. In the case of
Bitcoin, this would mean controlling around 8000 nodes42 spread around the globe43,
making this a very costly endeavor.
Every user wishing to enact transactions on the blockchain must possess a key pair
consisting of a public and a private key, as used for standard asymmetric encryption.
The user will then use the private key to sign transactions, which are then spread
throughout the network of nodes. The nodes in the network can then use the user’s
public key to verify the integrity of the transaction [23]. A so-called “miner” node
picks up this transaction, verifies it, and adds it to a block. Once this block has
reached its capacity, it is appended to the blockchain. Once the block is appended
to the blockchain, the transaction is confirmed and added to the ledger [27, pp. 3].
Miner nodes solve complex mathematical problems in order to be allowed to append

42Specifically meaning a computer or server running software that validates transactions and blocks
43Bitcoin nodes numbered 15963 on July 2nd, 2022, as checked on bitnodes.io
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to the blockchain, expending large amounts of computing power and thus energy
and resources [28]. As a reward for mining a block, so-called “cryptocurrency” may
be paid out (or “minted”) by the protocol [23, 24]. This same cryptocurrency is
also used by the user wishing for his transaction to be verified to pay the miner
node to do so [28]. Once a block has been added to the blockchain, the network of
nodes then needs to verify this new state of the blockchain. This is not to say that
cryptocurrency is a necessary feature of a blockchain [29], but commonly associated
with it.

Smart Contracts

The concept of “smart” (automatically enforced by hardware or software) contracts
predates the emergence of blockchains by a number of years. The first definition of
such a pre-blockchain smart contract comes from Nick Szabo in 1994 [30].
Starting with the cryptocurrency/blockchain known as Ethereum in 2014 [24], so-
called “Smart Contract” functionality has been added to some blockchains. Smart
Contracts in the blockchain ecosystem are pieces of software running on a blockchain-
adjacent system that use the blockchain to enforce contractual agreements, by pub-
lishing their own code to the blockchain, to make auditing the functionality of the
contract possible to everyone, and by executing on a pre-determined set of inputs
from involved parties [31, p. 2]. Smart Contracts also make it possible to store data
within transactions executed by the Smart Contract [31, p. 2].
This enables a smart contract to provide an interface to the blockchain with addi-
tional functionality on top of storing transactions on the blockchain for the user.
A smart contract is used by addressing a transaction to the contracts’ address [32,
p. 2296]. This also means, having an address on the blockchain, a smart con-
tract has an account on the blockchain, making it a definite entity operating on the
blockchain, comparable to the user actually interacting with the smart contract [33].
Once triggered, the code of the contract is executed on every node in the network,
using any parameters included in the triggering transaction. Technically, any gen-
eral purpose computation can be executed as part of a smart contract, but by their
blockchain-based nature, their most useful application lies in managing data-driven
interactions between participants of the network [34, p. 3].
An example of a smart contract at work could be as a Kickstarter-like crowdfund-
ing agent. In this example, a blockchain called “Cryptochain” with the associated
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cryptocurrency “Cryptos (C$)” will be used:

Alice wants to crowdfund a project. Her funding goal is 20C$, so the C$ will only
be paid out to her, if enough people transfer funds to the smart contract facilitating
the crowdfunding.
The smart contract used for this example has three functions:

1. deposit: Transfers an amount of C$ to the Contract. Calls the checkBalance
function after each execution.

2. checkBalance: Checks the amount of C$ deposited on the contract against
the goal. Calls the payOut function if goal is met or exceeded.

3. payOut: Transfers the contract’s C$ to the contract issuer Alice

If Alice now deploys this contract, and enough participants call the deposit func-
tion, once the goal of 20C$ is met, the contract will automatically transfer the C$
to the issuer, Alice.

This functionality is auditable by every user wishing to participate, since the code
is published on the blockchain, ensuring the contract isn’t secretly configured to
transfer funds to Bob instead. It can also be seen, that the contract is stateful and
can “own” assets/cryptocurrency on its associated blockchain.

2.3 Continuous Integration and Deployment Systems

2.3.1 What is Continuous Integration / Continuous Deployment?

CI/CD broadly describes a method, or a set of methods, that aim to automate
processes in software development to more quickly deliver applications, or new ver-
sions of applications, to customers. They are often visualized as pipelines, where
applications automatically traverse multiple stages, to transform code into a usable
application [35, p. 2]. These pipelines combine multiple stages that serve to build,
test and deliver these applications to their eventual targets. Therefore, CI/CD is
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a more concrete conceptual manifestation of the software supply chain itself, auto-
mated throughout.
There are broadly three stages associated with a CI/CD pipeline:

1. Continuous Integration (CI)

2. Continuous Delivery (CD)

3. Continuous Deployment (CD)

Continuous Integration is always part of a CI/CD pipeline [35]. Usually, building
a CI/CD Pipeline into an existing application development environment also starts
by adding CI. Functionally, this step will include [35]:

1. Sourcing application code with changes committed into it from a specified
application repository and/or feature branch

2. Building the application with the changes

3. Testing the newly built version of the application

4. Merging the new version of the application on successful completion of the
tests into a release branch in the repository

Notably, these steps can be completed manually, but in CI are always automated
[36, p. 33/34]. CI serves therefore to validate changes made to software made by
a developer, by automatically building software, testing it to a set of specified cri-
teria to ensure the changes have not broken the functions of, or the app itself, and
then merging those changes on the main branch of the application to be released
to Continuous Delivery. The result of the CI step will be a software version, which
has, however, not yet been delivered to a place where it can be used. As described
above, both the stage of Continuous Delivery and Continuous Deployment can be
shortened to “CD”. CI/CD Pipelines can contain either both, or sometimes only
Continuous Delivery [37, pp. 105].
Continuous Delivery depends on CI being built into the pipeline, which will supply
validated code to the repository. Continuous Delivery will then involve automati-
cally building the code into an application, running tests if applicable, and releasing
a software artifact that is ready to be deployed into a production environment [37,
pp. 108]. At this point, the CI/CD pipeline may be finished, and one of the defini-
tions of CI/CD has been satisfied. Drawing the parallel to the ICT Supply Chain
lifecycle (see Table 2), this would put the product in phase 2, “Development and
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Production”. In the analogy of the physical supply chain, at this point, the product
has finished its production, and thus ended its manufacturing lifecycle, and is ready
to be delivered to Distributors.
This step is accomplished in CI/CD Pipelines by Continuous Deployment. Contin-
uous Deployment encompasses automated processes to deploy or distribute software
artifacts once available [37, pp. 133]. This step relies heavily on testing in the
previous ones, since no automated testing is possible once deployed through to pro-
duction, and the only possible course of action from this point on are automated
canaries and deployment rollbacks to previous versions. Continuous Deployment
then makes the software artifact available to end customers, be that by deploying
on their systems via an update utility or being made available in a Software as a
Service (SaaS) context [37, pp. 140].
An Example of such a pipeline is shown in Figure 5.
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Continuous
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Deployment
Source

Build Test

Merge

Feature
Branch

Main

Branch

Application Repository

Build Test
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Application Version
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Environment

DistributeSource

Figure 5: An example of a CI/CD pipeline incorporating three stages

2.3.2 CI/CD Systems implemented

The processes of CI/CD discussed in subsection 2.3.1 and the automation that goes
along with it, do not add any value or functionality to the software supply chain as
pure concepts, and as such are inextricably linked to technical implementations.
In some cases, only distinct steps of the CI/CD Pipeline may be implemented, for
example a system providing only CI that needs to be integrated with other systems
providing either or both flavor of CD. Many software solutions provide integra-
tion of the whole CI/CD Pipeline however, some of the more popular ones being
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Jenkins44 and TravisCI45, both offering environments to automate CI/CD processes
across many frameworks and programming languages. These products can either be
implemented by the software manufacturer themselves, on self-owned server envi-
ronments, providing full control over the system environment, or used as managed
services, from a plethora of providers, easing integration into existing workflows and
removing some or all of the effort of maintaining these systems.
The code repositories themselves can also be self-hosted (using software such as
GitLab46), or consumed from either a self-managed cloud service (for example AWS
CodeCommit47) or as a cloud-based SaaS solution, most popularly, for example,
GitHub48. As of the StackOverflow Developer Survey 2021 [38], the most popular
Version Control Software underlying all the above-mentioned services and technolo-
gies, is Git49, being used by 93.43% and 94.41% of all and professional developers
respectively.

2.3.3 The Build Step (CI/CD)

The Build Step is central to the Continuous Integration and Continuous Delivery
phases [39, pp. 8]. In the Build Step, code for the application is compiled or
otherwise packaged into deployable artifacts. In the case of a compiled program,
this includes the compilation itself, as well as the linking of object files and libraries
[39, pp. 8]. This is often accomplished by means of a Makefile or a buildspec. This
file specifies the specific steps that are to be taken by the build system to build a
software artifact out of the code provided.
In some build Systems, for example AWS CodeBuild50 or GitHub Actions51, the
Build Step can be supplied with a list of console commands that are necessary
to build the software. In these cloud based build environments, tools that are
needed to build software, such as for example the Angular CLI52, which is used to
build Angular applications, will not be pre-installed, and after its installation might
not be available on subsequent executions, since the underlying virtual machines

44https://www.jenkins.io/
45https://www.travis-ci.com/
46https://about.gitlab.com/
47https://aws.amazon.com/codecommit/
48https://www.github.com/
49https://git-scm.com/
50https://aws.amazon.com/codebuild/
51https://github.com/features/actions
52https://angular.io/cli
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are provisioned on-demand and possess only ephemeral storage53. This makes it
necessary to include installation of these dependencies in every execution of the
build step.
In the case of node.js programs, it is also possible to include the build command
as a script in the package.json file (see section 2.2.2). This is common practice
in applications implementing frontend frameworks, such as react54, Angular55 or
Vue.js56.
The Build Step also includes pulling any needed dependencies from package registries
[39, p. 8]. In the case of a project built with npm as part of the toolchain, the
dependencies will need to be installed prior to building the application. The Build
System will do this, depending on how it is instructed in the build specification
mentioned above, either by executing the npm i command, installing dependencies
by using the list in the package.json file, or, preferably, using the npm ci command
to install packages using the lockfile (see section 2.2.2), ensuring a consistent state
for the build with the developers’.
In case a private registry is to be used to provide packages for the Build, the build
system needs to be configured such that it is allowed to access the private repository,
and such that will also pull packages from there reliably. In this case, the packages
stored on the private repository are often also published to there by their own build
systems. Private package registries are often used with large numbers of dependent
CI/CD systems to provide private packages, and to also provide better control over
versions of publically available packages being used.

2.4 What is a Dependency Confusion Attack?

The Term ”Dependency Confusion Attack” was coined by Alex Birsan in February
2021 [19]. The focus of his research were attacks on/with malicious packages in
public package registries (npm, pip, rubyGems) [19]. The goal of the attack (which
was very well achieved, infiltrating, among others, Apple and Microsoft) was to in-
ject malicious code into the production environments of the victims via malicious
software packages (compare Figure 6).
The injection itself was achieved by naming the packages like internally used pack-
ages at the targeted companies. Additionally, the packages were published in a large

53See CodeBuild documentation: https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-
compute-types.html

54https://create-react-app.dev/docs/production-build/
55https://angular.io/cli/build
56https://cli.vuejs.org/guide/deployment.html

24

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-compute-types.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-compute-types.html
https://create-react-app.dev/docs/production-build/
https://angular.io/cli/build
https://cli.vuejs.org/guide/deployment.html


Chapter 2. Background

master-trial-package
available at

v1.1.0 or higher?

Package
Manager

Public
Package
Registry

master-trial-package

available at


v1.1.0 or higher?

Private
Package
Registry

publish

Attacker

publish

Package

Author

master-trial-package

v1.1.0

master-trial-package

v1.3.0

Consumer

(Developer / CI/CD)

manifest


master-trial-
package

@^1.1.0

install

master-trial-package

v1.3.0

master-trial-package

v1.3.0

Figure 6: Schematic of a DCA in action

range of version numbers. Package Management Systems, when confronted with
the choice of packages with often higher numbers available from outside sources,
installed the malicious packages published by the researcher, that provided higher
version numbers than the original, internal, packages.
The package names were obtained by scanning public code repositories and compar-
ing the packages used to packages that are available on public package registries;
The packages that are left over after subtracting the publically available ones from
the whole are privately hosted and distributed. This disclosure of internal pack-
age names can happen unintentionally in automated build processes, where private
package names can be easily embedded in automatically generated and publically
released files. Compare Figure 7: If Pr is a list of packages sourced by OSINT meth-
ods from public repositories, subtracting Pu from it will reveal a subset of packages
that are not publically known (blue).

These package names are then claimed on public package registries, with many ver-
sions with high version numbers published. The package contents that are used
to claim these then contain malicious code. npm especially gives package devel-
opers the opportunity to execute arbitrary scripts after installing the package via
the “postInstall” step in the package delivery process (see section 2.2.2). The pack-
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PrPu

Figure 7: Comparing set of public packages to OSINT sourced set of private package list

age possesses all execution privileges of the respective node.js process providing the
runtime environment (see section 2.2.2). Even in well secured networks and de-
velopment environments, there is usually still the possibility of DNS exfiltration of
sensitive data, such as information on network topology or credentials stored on
the developer machine itself. Exfiltration of data over DNS requests, while data
throughput is low, has been a popular way of exfiltrating sensitive, lightweight,
data, such as the aforementioned credentials or private keys, since DNS requests are
very rarely blocked from leaving even well secured networks [40, p. 4].

2.4.1 Typo- and Namesquatting

Name- and in a wider sense Typosquatting is an attack pattern that was used as
one part of the two-pronged attack described above. Typosquatting is a well
known attack on dependencies downloaded from package management solutions.
One way this is achieved is to approximate the feigned packages name, but intro-
ducing spelling mistakes (the eponymous “typo”) into it [41, p. 3]. An example of
this is a typosquatting campaign started against users of npm in October 2019 [42,
p. 4]. In this campaign, 25 variations of the js-sha3 package were published to the
npm public package registry, with variations in name such as js-shq3 and js-rha3
(for the full list see [42]), intended to exploit typing mistakes or misremembered
package names. All the 25 impostor packages were found to be malicious [42, p. 4].
To prevent this, Taylor et al. [42] propose a program “SpellBound”, which is trig-
gered at the package installation step of the npm package lifecycle. Their algorithm
examines packages with similar names to the one to be installed, and compares
their “popularity score”, a metric based on download numbers in a specific time-
frame. The expected results are, that similarly named packages, where one is the
original and one is the impostor, will have vastly different popularity scores, and the
impostor can therefore be flagged as such.
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Another way of executing typosquatting attacks is impersonating packages that are
normally distributed under a scope. This attack pattern is specific to npm (see
section 2.2.2), which uses scopes. Real life examples of this attack pattern can be
found in the attack on Microsoft Azure developers in March 2022 [43]. In this case,
the attacker(s) claimed package names for their malicious packages that exactly
resembled their legitimate counterparts, but lacked the ”@azure” scope. One ex-
ample is the malicious impersonator core-tracing, pretending to be the legitimate
@azure/core-tracing package. All in all, 218+ Packages have been affected by this
attack [43]. This attack also used DNS exfiltration (and HTTP POST requests) to
exfiltrate user data.

Namesquatting describes a technique associated with typosquatting, where in-
stead of using misspellings or different spellings in package names, a package that
is not present on a package registry has its name claimed by an impostor package
(the “squatter”). Namesquatting is one of the core injection vectors of a DCA, and
requires prior knowledge about packages that exist on private, but not on public
package registries. This approach is unique to the DCA, as a central feature of this
attack is to impersonate packages that are not available on public registries, versus
typosquatting, which impersonates packages that are already available, but varies
the malicious packages’ names [42].

2.4.2 Version Spoofing

Version Spoofing describes the second attack vector in addition to Namesquatting
in a DCA. The combination of Namesquatting and Version Spoofing qualifies a
”complete” DCA. With Version Spoofing, the core concept is to publish a malicious
package that already in some way name squats an existing package. This malicious
package then will have its version number increased, such that it is much higher
than the version number of the package that is being impersonated (see also sec-
tion 2.2.2). This behavior has been central to Birsan’s Proof of Concept (PoC)
Attack in 2021 [19], and has been observed in a number of attacks involving name-
and typosquatting packages since, notably the very successful attack on Microsoft
Azure Developers in March 2022 [43].
Version Spoofing involves exploiting developers either not locking their dependen-
cies’ versions, or, alternatively, software used in private registries automatically try-
ing to get the latest version from a public registry, if available. To accomplish this,
the version numbers, in the case of an attack on npm packages versioned using
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semantic versioning section 2.2.1, several components of the version number are in-
creased substantially over the original packages’ version number. Primarily, and as
seen in the Azure Developer Attack 2022 [43] (this attack has been chosen as an
example, since affected packages could be found to document), the MAJOR part
of the version number is set very high - in the case of one of the affected packages,
setting it to 99.10.9 for the malicious core-tracing package (see Figure 9), im-
personating the @azure/core-tracing package, which is only available in version
1.0.0 at the time of writing and version 1.0.0-preview.14 at the time of the
attack (see Figure 8).

Figure 8: The original @azure/core-tracing package from the Azure Developer Attack
2022 [43]

Figure 9: The impostor core-tracing package from the Azure Developer Attack 2022
[43]

In this specific case, the very high version number does not affect the installation,
since it already relies on the Typosquatting component of the attack to infiltrate
the victim’s machine, since the original package is available under the @azure scope
publically. This attack does also not represent a full DCA, since packages were not

28



Chapter 2. Background

squatted by exact name, but by variations on their original name.
Similarly, the attacker could publish Packages in versions targeting other version
specifiers (see Table 3). This way, even if npm is not prompted to install the lat-
est MAJOR release, specifications to install MINOR or PATCH releases can be
targeted by the attack, since it is trivial to upload packages specifying arbitrary
versions of themselves to npm without changing other contents of the packages.

2.4.3 Dependency Confusion Attacks in Software Supply Chains

Since the PoC of DCA has been published by Birsan in February 2021 [8], there
have been a number of copycat attacks, containing actual malicious code. As pre-
viously mentioned, in March 2022, Microsoft Azure Developers were the target of
an attack, where packages relating to development on the Microsoft Azure Cloud
Platform were impersonated. In this attack, more than 218 packages were published
that impersonated legitimate packages in the @azure scope, exfiltrating data from
the affected machines by means of DNS Exfiltration and HTTP Requests [43]. The
direct aftermath of Birsan’s disclosure of the attack pattern were a number of copy-
cat packages, directly imitating Birsan’s approach being published on npm. These
packages, numbering around 275, directly copied the approach taken by the initial
report, but appeared to not all be malicious in intent [44].
In March 2021 a rise in packages copying the attack was again reported, this time
numbering over 700 malicious packages. Additionally, the first variations in attack
payload were discovered, in one case exfiltrating the bash history, possibly leaking
any credentials entered over the command line, and in one case, opening a reverse
shell on the victim’s system [45].
Also in March 2021, Sonatype reported a “vigilante actor” flooding the Python Pack-
age Index (PyPI) and npm with over 5000 packages using the DCA pattern. These
packages contained only code making simple HTTP GET Requests to a Tokyo-based
IP address and contained a disclaimer warning about supply chain risks [46]. Up
until now, beyond proof of concept and copycats, no damage beyond shock from
affected companies has been reported. Since these attacks continue to be launched
and continue to effectively infiltrate victims, and considering the runtime privileges
especially npm packages are awarded (see section 2.2.2), a successful attack with
severe consequences is to be expected, especially considering the far more sophisti-
cated attack by Code White GmbH [47]. A more detailed overview over real-world
DCAs, including attack vectors of the malicious payload, is given in section 3.1.
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2.4.4 Significance in Cloud Contexts

The public cloud, among which popular hyperscaling cloud providers (AWS, Azure,
GCP etc.) are situated, offers many benefits over traditional, on-premise server in-
frastructure. Among these are severely reduced procurement and maintenance cost
for physical machinery and other aspects of capital and operational expenditure, fast
and flexible scaling of resources according to demand and potentially huge amounts
of computing power for comparatively low prices [48, p. 531].
Due to the nature of these services, in a typical public-cloud context, all resources
are only reachable through public and potentially insecure channels - namely, the
internet [49, p. 120]. Even considering the numerous technologies on offer to make
these connections and accessibility secure, the hardware and the network are ulti-
mately not within the range of influence of the respective customer. This means,
among more general considerations about information security, ingress and egress
points of information must be considered [50, p. 362]. This holds especially true
in the world of Software Build- and Deployment cycles. As previously discussed in
subsection 2.1.1, most current software includes other pieces of software, usually in
the form of software libraries or packages managed by package managers. This of
course also concerns CI/CD systems running on centralized, customer-owned infra-
structure, but must be especially considered in a public cloud context, since here,
these systems can’t simply have their network connections blocked, lest the customer
itself wouldn’t even be able to access them, and additionally are usually configured
to pull packages indiscriminately from public repositories57. The inherent reachabil-
ity of these cloud-based CI/CD systems through the internet, as well as the usually
unsafe default settings in regard to package sources make these systems a prime
target for DCAs.

2.5 Preventive Methods

Following the discussion of the background and context of DCA in the previous
section, this section will outline some methods that are suggested in literature to
prevent certain vulnerabilities pertaining to DCA. These methods will be synthesized
into requirements for a preventive system in chapter 4, together with characteristics

57Compare, for example, jFrog Artifactory: https://www.jfrog.com/confluence/display/JFROG/Remote+
Repositories
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of DCA researched in chapter chapter 3. The methods discussed will be further di-
vided into methods for Detection, Organizational and Operative Methods, Technical
Methods and associated Best Practices.

2.5.1 Detection

Detecting Malicious Packages

The detection of malicious packages has been the subject of many research projects.
Malicious packages are a problem even outside DCAs, thus there is a broad range
of proposed methods of detection, as well as qualitative and quantitative analysis.
Ohm et al. [8] analyzed a large set (174 entities analyzed, 419 identified) of known
malicious packages in 2020, of which 109 were npm packages (about 63%, others
from PyPI and RubyGems). They were able to determine, that most (56%) ma-
licious packages would trigger their malicious routines on installation [8, p. 33], a
behavior mostly found in npm and PyPI packages, which can both trigger arbitrary
scripts on installation (setup.py for PyPI and see section 2.2.2 for npm).
They also find that 41% of affected packages check for a condition to be met before
executing, but this behavior is almost exclusive to malicious packages from npm [8,
p. 34]. An important finding of the study is that most malicious packages, 61%,
use typosquatting (see subsection 2.4.1) as their infiltration vector [8, p. 34], finding
linguistic traps such as British English differences to American English (“color” to
“colour” is specifically mentioned) to be used.
Second to being injected by means of typosquatting, Ohm et al. determine that
infection of an existing package is used to infiltrate victims’ environments [8, p. 35].
On these packages, traces of how the infection was accomplished is often removed,
however the risk profile is described in more detail in section 2.1.2.
The objective of these malicious packages was determined to be data exfiltration
in more than half of cases observed, followed by “dropping”, or download, of a sec-
ondary payload [8, p. 37]. Moreover, around half of these packages used obfuscating
methods to disguise their true intentions [8, p. 39], and are agnostic to OSs. One
important discovery was that there is significant clustering to be observed, where a
total of 90% of all 174 packages observed belong to a cluster of similar code patterns,
which on average comprises 7.3 packages [8, p. 37].
Following these insights, detecting malicious packages introduced by a DCA might
be possible via:
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1. Detecting script execution side effects on installation; or direct mitigation by
disabling scripts

2. Detecting “dropping” by payloads that sideload other malicious dependencies

3. Detecting obfuscation

4. Detecting clusters of suspicious code from a catalog of commonly reused ma-
licious code

In another paper, Ohm et al. propose detecting these malicious packages via the
forensic artifacts they introduce into the system environment [51]. Specifically, they
observed a significant increase of observables in once-benign packages that exhibited
malicious behavior after being infected [51, p. 4]. “Observables” here being foren-
sic artifacts according to the specification of STIX Cyber Observable Objects [52],
including forensic artifacts deduced from system calls being made by the suspicious
package while installing and running. Based on this observation, they propose an
additional step to the CI setup in CI/CD environments to be equipped to detect
these packages, which in turn will feed the whole build process to Cuckoo58, a tool
for dynamic analysis for file behavior, to detect suspicious observables as part of the
build process [51, pp. 5/6]. The results of this analysis are then fed back to the
developer, and it is up to him to decide if the process should proceed as normal, or
if packages are infected [51, p. 6].
Ohm et al.’s proposal from [51] hence introduces another tool to detect malicious
packages after they have been introduced into the system:

5. Dynamic Analysis: Detection of malicious packages based on installation and
runtime behavior in a sandbox environment

While the scope of the analysis was limited, they posit that generating warnings
based on the number of generated observables is a valid way of identifying malicious
packages, especially if benign versions and their number of generated observables
are known [51, p. 6].
In yet another report, Ohm et al. advocate for the use of signatures to detect these
malicious packages [53]. In a way, this is to be seen as a direct extension of the
technique proposed in [8] to use clusters of similar code to detect commonly reused
malicious code. The important difference is, that in the original proposal ([8]),
expert knowledge and manual labor was used to cluster code. In their proposition
in [53], this clustering is automated using Abstract Syntax Trees (ASTs) [53, p.

58https://cuckoosandbox.org/
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7/8] for source code comparison between packages and a Markov Cluster Algorithm
(MCL) to identify said clusters [53, p. 8/9]. They report an F 1 = 0.9959, which made
them able to identify seven previously unreported packages on the npm registry that
contained malicious code [53, p. 18].
This proposal amends one tool out of the ones already identified previously:

• Automatically detecting clusters of suspicious code by using code signatures
generated automatically

With these tools in the toolbox, it is possible to separate them into categories, based
on where in the development process or package lifecycle the detection method is
applicable, presented in Table 4.

Table 4: Methods of detecting malicious packages

Static Analysis Dynamic Analysis
Detecting obfuscation Detecting script execution side effects
Detecting clusters of suspicious code
(automatically)

Detecting suspicious observables at run-
time

Detecting “dropping” Detecting “dropping”

It should be noted, that detection of “dropping” has been both placed into the
categories of static and dynamic analysis, as this could either be accomplished by
detection of code signatures typical to “dropping” or at runtime by detecting the
downloading of the payloads requested by this code.

Finally, in the Detection section of the MITRE ATT&CK Framework Site For
ID T1195.00160, the recommendations include verification of distributed binaries
through hash checking (or “other integrity checking mechanisms”), which could be
categorized as a Static Analysis technique. However, this necessitates having a hash
of the artifact, and a trusted way to acquire this hash, from a known artifact to
check against. This technique will also fit nicely with npms lockfile, since integrity
information is stored within them (see section 2.2.2). Checking the hash is a very
computationally inexpensive operation, especially when compared to dynamic anal-
ysis, and does not require knowledge about clusters of malicious code, as required
in some discussed methods of static analysis.

59This score combines metrics for precision and recall, e.g. how few false positives and how many true positives
compared to a known number could be retrieved

60https://attack.mitre.org/techniques/T1195/001/
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Detecting Dependency Confusion Attack in Progress

Detecting a DCA in progress relies on knowing the patterns of attack vector exploita-
tion of packages that have been compromised with malicious code. Past Attacks have
followed very closely the patterns presented in Birsan’s original proposal/disclosure
of the attack [19]. This includes minimal damage to the infrastructure in which
the malicious code has been deployed. The main goal of the original PoC and the
following copycats has been, so far, to exfiltrate data from the victims’ environments
(only Code White GmbH’s attack [47] did theoretically include more functionality,
but in practice also restricted itself to data exfiltration). This Data exfiltration has
been accomplished in the original PoC via DNS exfiltration [19]. This technique
has been copied in almost every attack following this pattern so far [43, 44, 45]. In
some attacks, the DNS exfiltration has been accompanied by (attempted) data ex-
filtration over HTTP [46, 43]. A detailed analysis of a number of attacks, especially
concerning modes of attack, is provided in section 3.1.
A detection of a DCA therefore, currently, is most likely to be possible by detecting
data exfiltration. The two vectors used for this are:

1. DNS exfiltration, using DNS Queries

2. HTTP exfiltration, using HTTP Calls

DNS Exfiltration: DNS exfiltration uses Domain Name System (DNS) Queries to
exfiltrate Data. DNS is commonly used to translate Domain Names (e.g. “exam-
ple.com”) into IP addresses (e.g. “93.184.216.34”). To accomplish this, the client
trying to access a server, knowing the Domain Name, but not the necessary IP
address, sends the Domain Name to a public DNS Server (for example google’s
“8.8.8.8”). If the IP address is not found there, the request gets forwarded to the
Top Level Domain (TLD)’s Name Server, in this case .com’s NS. If found at any of
these stages, the client obtains the IP and can connect to the Server, if not, the IP
lookup fails and will be met with an NX Domain Error to the client.
As seen in the description of DNS above, the protocol is not intended to be used
for data transfer, since there is no free form “payload” as such. Hence, DNS queries
are often excluded from security monitoring, also owing to the vast volume of DNS
requests being made.
DNS exfiltration works by way of leveraging the subdomain61 of a DNS Request.
Recalling the flow of a DNS request presented above, a query for a subdomain that

61The subdomain is part of a Domain Name. The Domain Name is structured as follows: subdomain.second-level-
domain(2LD).top-level-domain(TLD). The subdomain can also be called third-level-domain (3LD) [54]
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is not registered on a public Nameserver will be forwarded to the Nameserver of
the next-higher domain. In this case, a DNS request for not-known.example.com,
where the subdomain not-known is not registered on a public Nameserver, would
result in a forwarding of the request to the Nameserver of example.com. Exchang-
ing this subdomain for a string which contains compressed data, this data can be
exfiltrated to this (malicious) Nameserver, potentially in multiple calls, if the data
is too large to fit in one string smaller than 64 characters62. The Nameserver of, in
this case, example.com can then retrieve the data from the subdomain label string.
For example, a DNS call to SGVsbG8gV29ybGQhCg.example.com would let the Name-
server of example.com extract a base64 encoded string SGVsbG8gV29ybGQhCg from
the DNS query, which would let it extract Hello World! as data, potentially ex-
posing trade secrets from confidential sources.
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Figure 10: DNS exfiltration Schematic

HTTP Exfiltration: HTTP exfiltration uses standard HTTP calls to exfiltrate
data. Therefore, any HTTP Method may be used to exfiltrate data, since HTTP
specifies some sort of payload for all HTTP Methods. This includes even HTTP
Methods such as GET or OPTIONS, since there are headers or URL parameters
that can be filled with arbitrary data63, as long as the receiving party (a malicious
server) knows how to handle these (potentially “illegal” by specifications such as
REST) requests.
62DNS specification permits each “label”, e.g. the parts delimited by periods in the domain, to be at maximum 63

characters long [54]
63https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
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Detection of these infiltration methods differs heavily in possible avenues of execu-
tion. HTTP exfiltration is, in most cases, comparatively easy to detect and prevent.
In the case of a CI/CD environment, HTTP traffic can and should be restricted
based on a Whitelist basis. This means only allowing HTTP Traffic to and from
known domains. In CI/CD environments, restricting access to domains such as code
repositories, package registries and possibly other endpoints known to DevOps per-
sonnel has to be implemented. In the case that this is not possible, intelligent threat
detection software such as Splunk64 or AWS GuardDuty65 provide means to monitor
for suspicious HTTP (and other) connections.

Detection of DNS exfiltration is much more complex, and, as DNS traffic is usually
less heavily scrutinized, not commonly implemented in ready-made solutions. Das
et al. [55] propose machine learning models to detect features deemed by them to be
typical of DNS exfiltration traffic. Their metrics averaged an F 1 = 0.96 [55, p. 740],
with a stronger false-negative tendency than false-positive (meaning less restriction
on legitimate traffic due to false positives). They also propose another threat model -
DNS Tunneling [55, p. 740]. In this case, the malicious code does not exfiltrate data,
but requests instructions from the malicious DNS server. These are given by the
DNS server by answering the DNS requests with DNS specification compatible TXT
records (or A- or AAAA-records)66. Their evaluation via PoC proves their proposed
ML solution to be effective, but they nevertheless conclude that knowledge about
their system might render it ineffective by crafting the malicious code such that it
circumvents the detection algorithm by altering its behavioral patterns [55, p. 742].
Nadler et al. [40] propose their solution only to the low-throughput DNS exfiltration
problem, since according to their research, it is much harder to detect and there are
at least ten known malware families exploiting the method [40, p. 3]. Their proposed
approach relies on anomaly detection, which relies on a dataset comprised of a recent
history of DNS requests. The system collects DNS traffic and converts it into feature
vectors corresponding to domains, and then uses a one-class-classifier to determine
if data is exchanged over these vectors [40, p. 6]. The anomalies this is based on
are abnormally long requests and responses, encoded payloads, and a large number
of unique requests (in terms of subdomain queries) [40, p. 6]. The solution itself
is supposed to be implemented on a DNS server as a constantly running process.

64https://www.splunk.com/en_us/devops.html
65https://aws.amazon.com/guardduty/
66All these are DNS record response types. TXT can include arbitrary text, while A and AAAA return IPv4 and

IPv6 addresses respectively
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Their system proved effective in detecting requests used to exfiltrate data via DNS
requests, but initially showed numerous misclassified domains to be blocked. This
rate dropped significantly after the algorithm was deployed for more than two days
of traffic [40, p. 11]. Their algorithm also proved ineffective against legitimate high-
entropy domain names, used by specialty services [40, p. 11].
Ultimately, detecting data exfiltration over HTTP is fairly trivial and integrated in
most solutions deployed for threat detection. Air gapping a CI/CD environment on
the HTTP traffic level is realistically possible even without employing the use of
self-learning dynamically blocking tools, since sources and targets of HTTP traffic
should be easy to determine and whitelist.
Doing the same for DNS traffic is far more complex, and in the case of pure DNS
exfiltration of data, hard to detect and possible to evade even learning systems
[40, 55] by changing the patterns of the attack, especially considering the threat
of false positives making it hard to seal the environment for fear of crippling vital
services (for example McAfee security services [40, p. 11]). These services might
even be other security solutions that use DNS exfiltration to extract information
from heavily guarded systems, such as Hidden Objects’ “SpyDR”67.

2.5.2 Organizational/operative

Strong Identity Monitoring

Hensley [56] in his article raises several important points regarding proof of iden-
tity in SSCAs. Although he primarily focuses on verifying the identity of actors
regarding access to systems and data, he applies this also to suppliers of third-party
software, citing the SolarWinds Attack [57]. In this case, attackers compromised the
trusted access of a third-party module to attack their victims from a trusted source.
This makes the case for stronger and more in-depth authentication of the identity of
actors on the side of the party integrating these modules, but also on the side of the
provider of the modules. By being able to verify that these modules come from a
trusted source or a trusted author, the modules can be implicitly trusted [56, p. 3].
This does require a system of identification where the token or similar mechanism,
or the mechanism providing these tokens used to realize the authentication cannot
be compromised [56, p. 2].
The problem of clearly identifying authorship is the central reason why attacking
open source projects as a malicious maintainer or contributor is so effective, as
67https://youtu.be/oQQ7VvDboPU?t=525
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discussed in section 2.1.2. One reason being that qualifications and references (as
in “This contributor can be considered legitimate because he has previously con-
tributed to other projects”) can be faked, and compromising identification tokens of
legitimate contributors is possible and used in practice [8, p. 29]. To counter these
kinds of attacks, a way of identifying contributors to code that is to be distributed,
which is more resilient against these kinds of impersonation attacks is needed.
This concept pairs well with the concept of checking hashes of software artifacts, as
suggested by the MITRE ATT&CK Framework in ID T1195.00168, since a trusted
hash of an artifact can only be created by a trusted author, necessitating strong
proof of identity.

Best Practices

If there are any private package registries used for npm packages in the development
process at all, it is very important to first choose a scope (see section 2.2.2), possibly
the company name, and publish all internal packages under that scope [58]. This
scope should, immediately after choosing it, be registered with at least the main
public npm repository, if not any that can be found. Choosing a scope will make
it impossible to publish any packages under that scope if not in the collaborative
team, and make it possible to associate a specific scope with a specific registry (in
this case the private registry)69.
Using the lockfile (see section 2.2.2) when building projects as part of a CI/CD
pipeline using the npm ci command also greatly reduces the risk of pulling pack-
ages employing a form of version spoofing (see subsection 2.4.2)70.
Generally, limiting network access of build systems as much as possible, includ-
ing public registries (provided publically available packages can be made available
through the internal registry), can be a tool to limit possible intrusion vectors.

68https://attack.mitre.org/techniques/T1195/001/
69https://docs.npmjs.com/cli/v8/using-npm/scope
70https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
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3 Characterizing Dependency Confusion Attacks

In the following chapter, real world examples and reports of Dependency Confusion
Attack (DCA)s will be used to determine characteristics of these attacks. These
characteristics will be used in the following chapter to develop requirements for a
system to prevent DCAs.

3.1 Real-World Dependency Confusion Attacks

There are very little to no scholarly publications available analyzing or describing the
DCA in ways that could benefit this analysis. This means that an analysis of DCAs
has to rely on threat reports and articles describing how to perpetrate this attack
as a “security researcher”. This does, however, give insights into the typical threat
actor, since the latter type of report, or rather tutorials, usually describes ways
of exploiting the attack vector. It should also be noted that the attack reports,
specifically, are usually published by companies also selling security solutions, so
a heavy bias towards highlighting vulnerabilities that can be prevented with the
solutions being promoted is to be expected.
On the other hand, bearing in mind the practical premise of this thesis, an in-depth
analysis of DCAs would go beyond the intended scope. Thus, a balance has to
be struck concerning the depth of analysis and the intended implementation of a
preventive system.
The last point to consider before moving into the analysis of the attack, is that
the public registries affected by this attack have been ramping up efforts to delete
packages used to demonstrate this attack as Proof of Concept (PoC)s1, so finding
packages to analyze might prove hard to impossible, preventing a direct analysis of
the attack by ways of dissecting packages.

1https://twitter.com/alxbrsn/status/1365308546296995847
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3.1.1 A Subset of Attacks

To provide a basis for analysis, a subset of attacks has to be selected. For the
reasons provided above, this subset is mostly represented by threat reports, that,
for the reasons of either the original malicious packages being already irrecoverably
deleted, or the attack details being considered confidential by the victims, cannot
be independently verified. Due to the additionally relatively scarce nature of these
reports themselves (even though an estimated 63000 DCAs have been reported [59]),
this quantitative analysis will have to be heavily augmented by an analysis of the
attack architecture in theory.
The Attacks/Reports analyzed will be marked AX, A for “Attack” and X being a
numerical identifier, for reference in developing the characteristics.
Note, that the sources for the attacks described are given at the beginning of each
section, and all information thereafter is taken from there.

A1: The Original Proof of Concept

February 2021 [19]
The first attack to consider is the originally published PoC by Alex Birsan in Febru-
ary 2021. In this first-of-its-kind (to be recorded) attack, or rather series of attacks,
a large amount of packages used internally by a number of high-profile companies
were namesquatted on public package registries.
The attack was perpetrated on registries for JavaScript (node package manager
(npm)), Python (PyPi) and Ruby (RubyGems). The Attack consisted of squatting
names of internal packages used by different companies, which were acquired by scan-
ning package manifests (see section 2.2.2) on publically available code repositories
such as GitHub. These package names were then squatted (the malicious package
placed under this name) with numerous version tags on the above-mentioned pub-
lic registries. The large number of published versions (100 to 1000 per package) is
especially notable.
The attack itself consisted of extraditing data about the machine the attack was ex-
ecuted on and the network the machine was part of via DNS Extraction. The Attack
proved very successful, infiltrating and extracting data from more than 35 organi-
zations to the date of the report’s publication. The exfiltrated data also showed
that the affected systems ranged from individual developers to internal (presum-
ably on-premise) and cloud-based build systems as well as vulnerable development
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pipelines. The packages used for the attack did not contain any of the original code,
and merely served to carry the payload of the researcher’s DNS extraction code.

A2: First Copycats Appear

February/March 2021 [60, 44, 46]
Shortly after the publication of the research and PoC, the security services and
research provider Sonatype initially flagged over 275 packages directly or almost
directly copying Birsan’s strategy from the PoC on npm. Notably, the same func-
tionality concerning extraction of machine and network data over Domain Name
System (DNS) was included in all affected packages. Additionally, the packages
only contained this code, removing any of the functionality of the packages whose
names were squatted to facilitate the attack. The attacks targeted, according to the
naming schemes used, companies such as Apple and Shopify. Identification of the
authors was not possible, and association with the targeted companies considered
unlikely.
In March of the same year, the number of identified packages targeting the DCA
mechanism jumped to over 700. These packages were again discovered and reported
by Sonatype, who identified them based on the same DNS extraction mechanisms
used in the PoC. At this point, malicious behavior apart from data exfiltration has
not yet been identified, suggesting merely copycats trying for bug bounties, similar
to what was paid out by many companies for the original PoC. Notably, one of
the packages contained additional code that opened a reverse shell on an affected
machine (or tried to) [60], marking the first time a deviation from the PoC attack
pattern is spotted. The packages were, again, published by pseudonymous authors
and appeared to contain no code apart from the malicious payload. Every package
published does appear to have numerous versions associated with it, with no ap-
parent deviation in content. The packages have been deleted from the public npm
registry and are not available for analysis on registry mirrors either.

A3: Snakes On A Package Index

January 2022 [61]
The copycat attacks in 2021 that were also covered in Sonatype’s “State of the Soft-
ware Supply Chain” [5] were mostly confined to npm as a package index. Some
packages using the attack vector of the PoC were published to the Python Package
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Index (PyPI) as well, but a marked number of these packages were uploaded top
PyPI in January 2022 by a user named “arturlebedev”. 1275 packages were up-
loaded by this user, all targeting well known, large companies, using package names
of internally used packages. Among the companies targeted were Google, Sagepay,
Apple, the standard Python setup tools, India’s national biometric identification
system “Aadhaar”, and several others.
The packages were deleted within an hour, information about how often these pack-
ages were downloaded is not available. The payload of these packages was once
again an attempt at exfiltrating fingerprinting information about the machine and
network, this time not only over DNS, but also using HTTP. Actual functionality
was apparently included in the relevant packages, apart from the malicious exfil-
tration code. The author “arturlebedev” does not seem to be affiliated with the
companies targeted. From the limited information still available after the packages
have been deleted, the pattern of dumping a large amount of package versions of
one package can be observed here as well.

A4: Virtual Machines, Real Confusion

April 2022 [62]
In April 2022, Sonatype reported a suspicious package that didn’t appear to squat
any previously known internal package name on PyPi, ostensibly belonging to the
VMware VSphere Automation SDK, part of VMware’s extensive virtualization so-
lution. Further research indicated, however, that this package was named after a
previously unknown internal VMware package2. The source of the package was de-
termined to be a Ukraine-based security researcher. Vladyslav Kotko, who is not as-
sociated with VMware in a development capacity, published the package containing
a payload similar to the original PoC in March 2022 under the name “vapi-client-
bindings”. No code related to the nominal purpose is contained in the package, only
the “call home” functionality using the DNS and HTTP based exfiltration technique.
The package name was reclaimed by VMware with the help of the package index
shortly after.

2https://github.com/vmware/vsphere-automation-sdk-python/tree/master/lib/vapi-client-bindings
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A5: White Team Caught Red Handed

April/May 2022 [63, 64, 65, 47]
In April and May 2022, ReversingLabs, Heise, jFrog and Snyk all reported a major
attack on German companies Bertelsmann, STIHL, Bosch and DB Schenker us-
ing the DCA method. The packages published under pseudonyms referencing the
victim companies’ names constituted a two-stage attack, the first variation seen
on the pattern of the original PoC. The attacking packages contained obfuscated
code (the first variation) and, also a first, actual dependencies which themselves
contained malicious code. In this case, the attackers thus used the original PoCs
way of injecting their packages into their victims’ environments, and then used
the known-exploitable package manager to pull more malicious dependencies, pre-
venting identification of the malicious code by, for example, static analysis before
installing the package’s dependencies. The attack payload in these secondary pack-
ages, however, still appeared to be DNS extraction of fingerprinting data. However,
some more functionality in the form of a “self-destruct” function was present. More
analysis of the package revealed an additional mechanism consisting of a dropper
and a payload. If the malware package manages to infiltrate a system and “call
home” via the above-mentioned DNS exploit, a decrypted malicious payload is sent
back, and decrypted by the malware “agent”. This payload can either be JavaScript
or a binary file, which will be executed upon receipt by the malware agent. This
is particularly interesting, since the first step of fingerprinting the victim exposes
the information necessary to compile native binaries for the victim’s machine to the
attacker. The payload that was observed in the analysis was a JavaScript file instan-
tiating a command-and-control client that communicated with a server controlled
by the attackers.
Analyzing the package further, all sources reported that it appeared to be part of a
penetration test performed by German red team security consultancy Code White
GmbH, who later owned up to the attack on Twitter3. This marks the first time that
the malicious payload is more than the DNS extraction of data used in the PoC,
and switches it out for a sophisticated attack, that is even hardened against static
analysis. Analyzing the reports from jFrog and Snyk does, however, imply that no
actual code used in the original packages being impersonated here is contained in
the impostor packages.

3https://twitter.com/codewhitesec/status/1524016955186982912
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3.2 Characteristics of Dependency Confusion Attacks

Based on the examples of real-world DCAs provided in section 3.1, a number of char-
acteristics have been identified, that quantify an attack as a DCA. In the following
sections, these characteristics will be named and explained.

3.2.1 C1: Targeting Packages from Private Registries

The first characteristic that can be spotted from all of these attacks is the fact that
DCAs, as opposed to for example the closely related Typosquatting Attack (see sub-
section 2.4.1), target exclusively preexisting packages under their full names. How-
ever, these packages being impersonated cannot have already been published/exist
on public registries, since the main attack vector is squatting an existing name on
a public registry. These names are obtained through Open-Source Intelligence (OS-
INT)-Methods, such as ones explained in section 2.4. Thus, the packages being
targeted for impersonation are packages that are stored on private registries pre-
attack.
Characteristic C1 can be observed in all attacks described in the previous chapter.
Especially apparent in attack A1, where these companies were explicitly targeted,
but also in A3, A4 and A5, which represented attacks specific to internally used
packages from private registries that were obtained - presumably - through OSINT
techniques. This is very likely a feature of A2 as well, although the state of facts
being this opaque makes this difficult to argue.

3.2.2 C2: Malicious Package Author can not Publish to Private Registry

The second characteristic observable from all real world DCAs presented in the scope
of this chapter is the fact that malicious code is injected into the application via
an external package. It is important to note, that an attack that would publish a
package containing malicious code directly to an internal package registry, would not
constitute a DCA. Publishing to a private package registry, for example company-
internal systems, requires credentials. The attack in this case would not constitute
a DCA, but possibly obtaining Valid Accounts4 through other attacks.
It is therefore safe to assume, that in case of a DCA the author of the malicious
package does not have access (or credentials) to publish directly to the private

4MITRE ATT&CK T1078 https://attack.mitre.org/techniques/T1078/
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package registry, instead having to exploit the behavior of package managers to
inject his malicious code through package impostors.
CharacteristicC2 can be observed in all attacks. This can be considered the baseline
for all the attacks, considering that, if the attackers had access to the internal
registries whose packages were targeted, it would be easier to directly inject malicious
packages instead of choosing to inject them by exploiting secondary systems.

3.2.3 C3: Malicious Package Version contains Code Different to
Legitimate Version

The third characteristic common to all observed DCAs is the packages’ actual code
being different to any legitimate version. This is especially apparent, when consider-
ing existing versions being impersonated. This characteristic is especially noticeable,
since even in non-malicious, explorative, exploits of the DCA technique, there is still
code added to the package that differs from the legitimate version. Additionally, it
has to be considered that, even if the DCA was employed to facilitate injection of a
package into a victims’ system, if it contained no additional code (malicious or not),
so that a check of the malicious packages’ file integrity would not reveal a difference
to the legitimate package, the ‘malicious’ package would not actually constitute a
threat, since the function would be exactly the same as the legitimate ones’.
This fact then allows for the assumption, that any actual malicious package being
used in a DCA would then be clearly distinguishable from the legitimate package
by means of its file integrity information.
CharacteristicC3 can be observed in all attacks mentioned. Attacks A1, A2, A3 and
A4 show this in the way that they contain nothing but code used to fingerprint the
victim and extract this information via DNS - something that is itself unlikely for a
productively used, internal, package - but no actual code in terms of the functional-
ity promised by the name of the package either. Attack A5 is especially interesting
to this case, containing sophisticated malware with additional dependencies and a
dropper-payload agent. The packages used in A5, however, do not appear to contain
any actual productive code either.

3.2.4 C4: Malicious Package Version Author is not the Original Author

The fourth characteristic of a DCA is the difference in authors between the legitimate
version of the package versus the impostor package. This does not mean that the
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actual person or system publishing the package is not the same - this can not be
verified - but that the verifiable identity of the authors differs. In essence, this means
that legitimate packages are published by authors known to the consumers of the
package, while the authors of the impostor package are basically anonymous to the
consumers of the package. In most cases, the author of the legitimate package will
be known and verifiable in the (likely enterprise) context of the package’s use, while
the author of the impostor package will not be identifiable within the same context.
It can therefore be assumed, that making a package’s author verifiable throughout
its lifecycle would enable implicit trust in the package itself. In other words, if
a package (and all its constituent files) can be traced to an identity of an author
throughout building, publishing and consumption of the package, the package can
be trusted.
Characteristic C4 can be observed in all attacks, more clearly in attack A1, A4 and
A5, where there is a definite disconnect between the (after the fact) known authors
and the victims. However, keeping in mind the pseudonymous nature of the authors
in A2 and A3, it can be safely assumed that these authors are very likely not the
authors of the existing packages.

3.2.5 C5: Malicious Package is a Version of an Existing Package

The fifth characteristic of a DCA to be observed, is that every impostor package used
to facilitate a DCA is a version of an existing package. Importantly, and included
in characteristic C1, this package cannot exist on public registries. The existing
package, as defined by any version of a package identifiable by a package name,
having been published on any internally used registry, creates the basis on which
to execute the DCA. Without a package to base the attack on by squatting the
name and version(s) on a public registry, the DCA cannot be executed. A DCA is
therefore only possible by using already published (internal) packages. This means,
the attack vectors of a DCA are known to the possible victims beforehand.
Taking this into account, the assumption can be made, that prevention of DCAs
is possible by observing only the finite set of previously known internal, legitimate,
packages. The number and nature of all possible DCA attack vectors is therefore
known a priori, and can be used in conjunction with other characteristics to prevent
DCAs.
Characteristic C5 can be observed in all attacks. Every attack described targeted
explicitly internally used packages, which, by the nature of these attacks, existed in a
private repository somewhere. The attacking packages therefore constitute versions
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of an existing package. Additionally, package versions of these malicious packages,
were typically distributed in large numbers, meaning many version numbers of these
packages were published, that mostly had no original counterpart and were designed
to take advantage of package managers’ version resolution strategies.

3.2.6 Overview of Characteristics

The characteristics discussed in the previous sections are summed up in Table 5.

Table 5: Overview of DCA characteristics

Index Description
C1 DCAs target packages that are consumed from private package reg-

istries and squat their names on public registries in order to imperson-
ate them

C2 When executing a DCA, the author of the malicious package has no ac-
cess to publish directly to the private registry and relies on the package
manager of the victim to confuse his malicious package on the public
registry for the legitimate package in the private registry

C3 Any malicious version of a package is distinguishable from its specific
legitimate counterpart by the cumulative integrity of its included files

C4 A malicious package in the scope of a DCA cannot be traced back to a
verifiable author in the context of the legitimate package’s usage scope

C5 Any malicious package used in a DCA is a version of a previously ex-
isting legitimate package from a private registry
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4 Developing a System to prevent Dependency Confusion
Attacks

4.1 Choosing an Attack Prevention Strategy

After giving an overview of the Dependency Confusion Attack (DCA), looking at
existing preventive methods and characterizing the attack based on real-world ex-
amples, a strategy to prevent the attack must be chosen with this information in
mind. This strategy should be based on the methods of prevention discussed pre-
viously, and offer a realistic chance of preventing the DCA while being able to be
implemented in a system that can be integrated with existing Continuous Integra-
tion/Continuous Deployment (CI/CD) environments.
The final choice of strategy is based on the exclusion of strategies that were consid-
ered inappropriate. Detecting a DCA in progress, as discussed in section 2.5.1, was
not a strategy considered for the preventive system. As discussed in that section,
the payload of the attack may carry any malicious code to be executed on successful
infiltration. Thus, a definite attack pattern that could be detected in the execution
environment cannot be distilled from the attacks that have been executed so far.
Additionally, the malicious payload so far has mostly executed data exfiltration via
Domain Name System (DNS), which in itself is hard to detect and prevent (see also
section 2.5.1).
Another strategy that was considered, but ultimately not chosen was dynamic anal-
ysis. As discussed in section 2.5.1, there are several methods available for dynamic
analysis, which all rely on having a sandboxed environment to execute the un-
known code in. This would mean providing each CI/CD environment with its own
sandboxed environment, which would need to be maintained, and would impact
execution times of the CI/CD process. While this may not be a problem for tradi-
tional, on premise, infrastructure, in terms of cloud-based CI/CD processes, a much
larger number of different CI/CD environments is common, and would complicate
the introduction of sandboxing or dynamic analysis infrastructure. Additionally, the
typically large number of dependencies in the node package manager (npm) ecosys-
tem (compare subsection 2.2.1) would make the dynamic analysis of each slow and
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involved.
The strategy ultimately chosen thus combines aspects of static analysis (see sec-
tion 2.5.1) and strong identity monitoring. Other aspects of static analysis that
were considered, but decided against, were the introduction of static code analysis
by clusters of known malicious code and the detection of obfuscation. This choice
was made based on the fact, that the actual code contained in the packages that
were used in executing the DCA offered little potential for analysis or building a
catalog of known clusters of malicious code. A much higher potential for preventing
the attack lies in determining if a given package is actually the package it purports
to be, or an impostor. To this end, the decision was made to use integrity verifica-
tion in combination with strong identity practices in order to prevent the DCA.

Package Integrity Information

Preventive

System

Publish Package

Proof of Identity

+


Package Integrity Information
Package

Author

Package

Package

Registry

Package

Consumer

Figure 11: The preventive system’s attack prevention strategy at a high level

The strategy that was chosen is shown in Figure 11. In essence, the system allows a
package’s author to provide integrity information about a package he publishes to
a package registry to the system, together with strong proof of identity. This allows
the system to provide this information to consumers of the package, who can then
use this information to verify the authenticity of the package, while being assured
that the information provided to the system is authentic. This concept is used as
the basis for the development of the preventive system. In the following sections,
additional requirements towards the system are detailed, which include requirements
based on the characteristics of the attack itself, the technical framework the system
is to be deployed in, as well as functional requirements towards the system. These
requirements, which will reflect the preventive strategy chosen here, will then be
synthesized into an architecture.
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4.2 Converting Dependency Confusion Attack Characteristics into
Prevention System Requirements

In this section, the characteristics of DCAs explained in chapter 3 will be used to
infer requirements to a system used to defend against these attacks. These are the
central requirements the system is to be built around, forming the core of the func-
tionality of the system.
Requirements are identified by IDs in the form of RC-Y, with R signifying “Require-
ment”, C signifying a Requirement derived from a characteristic, and Y being a
numerical identifier.

Table 6: Requirements derived from characteristics of the attack

ID Description Rel. Char-
acteristic

R-C1 The System must be able to discern publically available
packages from ones provided via internal registries

C1

R-C2 The system must be able to read the lockfile or manifest
of any project to acquire information about the actual
source repository of the package

C1, C2

R-C3 The System must be able to store and access known-
reliable integrity information about privately published
packages, as well as be able to query information from
the registry of any package mentioned in the lockfile or
manifest to compare them

C2, C3

R-C4 The System must be able to provide the ability to store
and query information about a packages author, mak-
ing him identifiable.

C4

R-C5 The System must be able to store and access known-
reliable information about all versions of privately pub-
lished packages, as well as be able to retrieve this in-
formation from the lockfile or manifest of the project
being scanned

C1, C3, C5

R-C6 The System must enable package publishing authors to
store integrity and version information about package
versions while binding it to a clearly identifiable prop-
erty of the author

C2, C4
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4.3 Identifying Functional Requirements

In this section, functional requirements are identified, which are posed against the
system to integrate it in existing environments. Fulfilling these requirements is
essential to guarantee actual real world use and impact of the security system to
prevent impostor packages being injected instead of legitimate internal packages.
Requirements are identified by IDs in the form of RX-Y, with R signifying “Require-
ment”, F for a “Functional” Requirement and Y being a numerical identifier.

The functional requirements describe requirements for the functionality of the sys-
tem and its required behavior in regard to user input (compare Pohl [66, p. 8]).
The users, the main source of the functional requirements, should not have to alter
their workflows significantly to benefit from the system, to prevent the users from
not using the system at all, if its implementation into the existing workflows is too
cumbersome. Additionally, the function of the system must allow the verification of
integrity information of packages, as well as the ability to store it, to allow for the
preventive methods chosen in section 4.1.

Table 7: Functional requirements

ID Description
R-F1 Authors of internal packages must be able to authenticate to contribute

new package versions without providing additional credentials other
than their existing domain credentials

R-F2 Authors of internal packages must be able to be authorized based on
existing roles or groups

R-F3 The security system must not change the workflow of contributing new
package versions other than stopping it if malicious activity has been
detected

R-F4 The security system must provide functionality for authorized authors
to store integrity information on new package versions identified by
name and version

R-F5 The security system must provide functionality for consumers to verify
integrity of packages based on package name and version

R-F6 The security system must store package integrity information in such
a way that possibilities of manipulation by both in-house and third
parties are prevented

R-F7 The security system must provide a way to audit packages that cannot
be verified on consumption, for packages that are not developed inter-
nally, and thus consumed from sources other than the internal registry
legitimately
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4.4 System Development

Based on the requirements developed from the characteristics of DCAs (see sec-
tion 4.2), as well as functional requirements (see section 4.3), the system realizing
these requirements was developed. The Development is documented here at a high
level in the form of technologies chosen, architectural decisions taken and an ac-
knowledgment of limitations the system faces. Detailed documentation of the de-
velopment process itself, including details about the programming and testing, has
not been included, as it would increase the size of this already large chapter dispro-
portionately to the actual information content, and detract from the more compact
and important information of higher-level architectural decisions taken. The source
code is available and will be included with this document.

4.4.1 Technologies

The System was developed based on technologies that satisfied the following require-
ments:

• Availability: The technologies should be readily available and accessible

• Functionality: The technologies should represent a real-life potential to be
used (or are already used) in the context of cloud-based CI/CD environments

• Popularity: The technologies used should be relatively popular, both to ensure
(ongoing) support and realistic impact of the proposed solution

• Familiarity: The technologies should be known to the author, ideally having
already been used, to ensure speedy development work and realistic completion
of the project

These criteria ensure a system that is both easily integrable and maintainable by
actors other than the author on a technical scale at least.

System Environment

For the reasons detailed in subsection 4.4.1, the following ecosystem was chosen to
implement the system:
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Table 8: Technologies used to implement the project

Category Technol-
ogy

Description

Runtime node.js Very popular server-side JavaScript runtime, in-
tensive use of third-party packages

Package
Manager

npm Supports node.js, the package manager associ-
ated with 63% of malicious packages in a recent
study (see [8])

Cloud-
Vendor

AWS Supports serverless CI/CD environments with
minimal setup, supports IaC with TypeScript/n-
ode.js minimizing setup time

The architecture chosen for the implementation of the Proof of Concept (PoC) is
shown in Figure 12. This architecture will be used to both implement an attack and,
following that, will be hardened and attacked again to evaluate the effectiveness of
the system. The architecture is split between repositories on GitHub and reposito-
ries as well as other services on AWS. This split is used to ensure that even when
potentially infecting services on the AWS Account where the system (and attack)
will be implemented, the AWS account can potentially be “nuked”, removing any
and all services including the code repositories. The AWS code repositories have
been configured to allow the GitHub code repositories to push code to AWS, but no
transfer is permitted in the other direction.
AWS: On the AWS infrastructure side, two CI/CD Environments have been config-
ured. One, the Package Pipeline, has been configured to trigger on changes commit-
ted with Git to the “main” branch of the associated code repository. This repository
has been implemented with AWS CodeCommit, and is served by an “off-site” GitHub
repository. When a commit occurs, the repository triggers the AWS CodeBuild ser-
vice. In CodeBuild, a Build Step has been configured that builds a npm package from
the code in the repository and publishes it to an internal registry. This registry has
been implemented with AWS CodeArtifact, which provides a CommonJS compliant
package registry (see subsection 2.2.2), allowing npm packages to be published and
requested from it. This package registry is available from both the Package CI/CD
Environment and the Application CI/CD Environment. The Application CI/CD
Environment is used to build an Application consuming the package built with the
Package CI/CD Environment.
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Figure 12: CI/CD Architecture for PoC attack and hardening
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Vulnerable Application

The Application being built by the vulnerable CI/CD pipeline is a very simple piece
of software used to deploy IaC (using the AWS Cloud Development Kit (CDK) in
TypeScript as a technological basis) on the AWS cloud platform. To accomplish this,
it consumes a package containing a construct, itself IaC, that serves to implement
more functionality. In this scenario, the functionality implemented by the pack-
age being consumed can be regarded as a typical reuse of common patterns within
corporate development environments. Functionality that is often implemented the
same way across many projects is packaged and distributed via internal package
management systems. In this case, the actual content of the shared component is
irrelevant, so it contains merely an AWS Lambda Function that does not implement
any actual logic. The rest of the application is empty, as the function of the appli-
cation has no bearing on the attack being carried out nor the prevention of it. The
Application architecture and system context is shown in Figure 13.
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deploy
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package

CI/CD System
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CloudFormation

Stack

pa
ck

ag
e 

co
nt
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Figure 13: Architecture of the application deployed via the vulnerable CI/CD pipeline

Legitimate Package

As discussed in the details of the vulnerable application above, the package imple-
ments an IaC component used in the main application. This component is also
implemented with the AWS CDK in TypeScript. To make it distributable and con-
sumable as a package, the application component being distributed is implemented
as an AWS CDK construct, describing a reusable component in the vernacular of
AWS. The distribution of this package to the internal registry is shown in Figure 12.
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To enable carrying out the attack, an impostor package was developed as well (see
subsubsection 6.1.1). This package implements the same functionality as the le-
gitimate package, but adds a postInstall script to the package manifest (sec-
tion 2.2.2), outputting a message after the package has been installed.
The legitimate package contains an AWS Lambda function that outputs the message
seen in Figure 14 when deployed and hit with an HTTPS Request.

Figure 14: HTTPS response of the lambda function from the legitimate package once
deployed

Vulnerable CI/CD System Environment

The CI/CD pipeline used in this setup contains a simple, three-step, process. The
pipeline itself is closely associated with a code repository implementing Git as a
versioning system and running on AWS CodeCommit1 as the service provider.
A commit of new code in this repository triggers the CI/CD pipeline and starts a
new run. The repository itself is coupled to an “off-site” repository on GitHub (see
also section 4.4.1), which is coupled via SSH Key for authentication and authoriza-
tion, to push code to the AWS CodeCommit repository. Human user access to the
AWS CodeCommit repository is not intended nor provided. The SSH Key used is
connected to a user account in the AWS Identity and Access Management (IAM)
system, which includes a policy only allowing reading and writing to the specific
code repositories (Legitimate Component and Vulnerable Application).
A commit to one of these repositories then triggers the CI/CD pipeline of either
the Legitimate Component or the Vulnerable Application. In case of the Legitimate
Component, this includes:

1. Sourcing: In this step, the code associated with the new commit gets loaded
into a temporary compute environment within AWS and packaged into a ZIP-
File. This File is then output and made available to use for the next step

1https://aws.amazon.com/codecommit/
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2. Building: In the Build Step, the output (ZIP-File) of the Sourcing step is
loaded into an Environment specified in the AWS CodeBuild project definition.
AWS CodeBuild is the service used to implement this step. It requires a build
environment (in the form of a Docker container image), Buildspec (in the form
of a bash script) and the build files (in the form of a ZIP file) to be provided. It
will then perform the steps specified in the Buildspec on the build files, using
the tools provided in the build environment. In the case of the Legitimate
Component, it will install the “aws-cdk” package to the build environment
globally to facilitate building the component which uses AWS CDK tooling.
It will then authenticate with the internal registry, build the component using
the TypeScript transpiler, and publish it to the internal registry using npm
publish. The Buildspec is pictured in Listing 3

1 npm install −g aws−cdk

2 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

3 npm ci

4 npm run build

5 npm publish

Listing 3: Buildspec of Legitimate Component

In the case of the Vulnerable Application, the CI/CD pipeline includes the following
steps:

1. Sourcing: This step is the same as with the pipeline of the Legitimate Com-
ponent. The commit gets zipped and made available to the build environment
in the Build Step.

2. Building: In the Build Step, the output (ZIP-File) of the Sourcing step is
loaded into the defined Build Step. The general behavior is the same as speci-
fied in the pipeline of the Legitimate Component. In the case of the Vulnerable
Application, the AWS CDK tooling will be installed. It will then authenticate
with the internal registry, install the necessary dependencies from the mani-
fest and build the component using the TypeScript transpiler. Lastly, it will
synthesize an AWS CloudFormation template from the build files, providing a
template to deploy the application in the next step. The Buildspec is pictured
in Listing 4
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1 npm install −g aws−cdk

2 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

3 npm i

4 npm run build

5 npx cdk synth

Listing 4: Buildspec of Vulnerable Application
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4.5 System Architecture

In this Section, the architecture of the preventive system against DCA will be de-
veloped and explained. To this end, a functional architecture will be developed,
which will specify the functions provided by the system. Building on the functional
architecture, a technical architecture will be developed, which will specify how these
functions will be implemented to produce a usable program.
Additionally, for the actual development, and in further explanation the short
project name of “K9” has been chosen. This name is a homophone to “canine”
and used in common parlance as a nickname for law enforcement dogs. In the case
of the prevention system, it has been chosen since the system “sniffs out” impostor
packages similarly to law enforcement dog “sniffing out” contraband.

4.5.1 Functional Architecture

The Chain of Trust

To understand the development of the functional architecture, a concept described
as the “Chain of Trust (COT)” is introduced. This concept is used to distinguish the
relationships of trust, between the components in the vulnerable system versus the
hardened system implementing the proposed solution, along the Software Supply
Chain (SSC).
Trust, in this context, means the ability of one component to rely on another, the
“trusted component”, to supply it with code or other artifacts that do not disguise
themselves as other code or artifacts, and do not carry malicious behavioral pat-
terns. This trust is comparable to a supplier-manufacturer-relationship in a physical
supply chain (see subsection 2.1.1). In the physical supply chain, the manufacturer
relies on the supplier to provide him with components that conform to specifications
that are known to both, and enable the vendor, supplied by the manufacturer, to
rely on the manufacturer to provide end-products that are manufactured to their
specifications. This means, that every actor in this chain relies on another, to con-
form to standards of some kind. A COT between these actors is thus established. A
breach in this COT, for example the supplier supplying components of poor quality,
could be resolved in favor of the manufacturer if both parties have agreed to comply
with standards beforehand, for example ISO or DIN standards. This introduces the
concept of a “Central Authority” to the COT. In this case, the trust of the manu-
facturer is placed in the standards authority, instead of the supplier. In the same
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vein, the vendor can place his trust in the standards authority, by agreeing with the
manufacturer to manufacture to certain standards of the standards authority.

Relative Chain of Trust: Within the SSC, the situation is much the same. Specif-
ically, in this section, the COT between the components making up the SSC on
which a DCA would be executed will be examined. In the case of a SSC not im-
plementing the proposed system, the COT can be represented as shown in Figure 15.

trusts Developer trusts CI/CD

System

Package

Registry trusts Consumer

Supply Chain

Figure 15: Relative “Chain of Trust” simple schema

In this simplified view, four actors are involved in the chain of trust along the SSC.
These are:

1. Consumer: Consumes applications or other components produced by the
CI/CD System

2. CI/CD System: Consumes code from the Developer and produces applica-
tions or other components

3. Developer: Consumes packages as dependencies from the Package Registry
and includes these dependencies in code sent to the CI/CD System

4. Package Registry: Holds packages and information about them

The chain of trust starts with the developer consuming packages from the Package
Registry. There is an implicit trust established from the developer, for the registry to
supply him with the package requested. The developer can check with the Package
Registry, if the package that has been delivered is the one requested, by requesting
integrity information from the registry. Once the Developer finishes developing, he
hands over the code, including dependencies and integrity information about those
dependencies to pull from the registry, to the CI/CD System. The CI/CD System
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trusts the developer to supply it with correct information regarding the dependen-
cies and their integrity information, which it uses to pull packages from the registry,
and uses the integrity information provided by the developer to verify that those
are the packages the developer intended to include. Once the CI/CD System has
finished building the application or component, it provides these to the Consumer.
The Consumer trusts the CI/CD System to provide him with an application or com-
ponent that conforms to his expectations and likely the promises of the developer.
This COT does not provide adequate means to detect malicious interference at any
point. If the malicious actor manages to infect any stage of the process, be that
the Package Registry, the Developer or the CI/CD System, the chain of trust is still
intact. In Figure 16 both the “good path”, in which no malicious code is injected
(Green, Option 1) and the “bad path”, in which a DCA is performed (Red, Op-
tion 2), are shown. In case of Option 2, the Developer (accidentally) consumes a
malicious impostor package from the public npm registry. The package version of
this malicious packages, as well as integrity information are written to the lockfile
(compare section 2.2.2), which is contained within the Application Code. The Ap-
plication Code is pushed to the CI/CD System, which will pull the package from the
public registry. Even though an integrity check is performed, if the lockfile carries
information about the malicious package, this integrity check will only ensure that
the malicious package is delivered to the CI/CD System. This, in turn, leads to an
infected application being produced by the CI/CD System and being delivered to
end users.
By being forced to trust only the direct predecessor in the SSC, this system enables
bad actors to poison one link of the package delivery system in the SSC, while other
members have no means to verify the integrity of packages they consume. In con-
trast to the physical supply chain, there is no centralized standards authority to
refer to.

Absolute Chain of Trust: The concept of the absolute COT introduces one such
central authority into the concept. The proposed solution is called the absolute
COT, since every link in the supply chain can rely on an absolute truth outside its
direct predecessor. This absolute truth is provided by external systems. This is in
contrast to the relative COT, where every link can only rely on the truth provided
by its direct predecessor. The absolute COT proposed here is shown in a simplified
version in Figure 17. The actors involved in the absolute COT are the same as those
involved in the relative COT, with the addition of a central authority. The process
itself still moves along the SSC, involving the Developer pulling packages from the
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Figure 16: The relative “Chain of Trust” present in unsecured publishing and consumption
of packages, both for the intended way (Option 1) and the possible way of
intrusion by a malicious actor (Option 2)
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Package Registry and forwarding code with dependency information to the CI/CD
System, which in turn produces an application for the Consumer. In the case of the
absolute COT, none of these participants in the supply chain need to trust their
predecessor to supply them with legitimate material, since they can independently
verify everything they’re given.

trusts

Developer

trusts

CI/CD

System

Package

Registry

trusts

Consumer

Central
Authority

Supply Chain

Figure 17: Absolute “Chain of Trust” simple schema

Malicious interference can be detected at any point, given that the Central Authority
hasn’t been compromised. In the case of the proposed K9 System, the Central Au-
thority’s most important component is a Smart Contract on a Blockchain providing
integrity information about known internal packages. The decision to use a Smart
Contract was taken for reasons such as availability, ease of use and maintainability.
A more detailed Architecture Decision Record (ADR) explaining the reasoning can
be found in the appendix, under section A.1. The full proposed absolute COT of
the K9 System is shown in Figure 18 for the process of building an application in-
cluding the consumption of dependencies from a private repository source. It can
be clearly seen, that in this process, starting with the Developer, no trust is placed
in the preceding link in the supply chain. The Developer consumes a package from
the Package Registry, but does not rely on the (possibly wrong) registry to provide
him with integrity information about the package, instead choosing to check the
packages’ integrity with information stored on the Smart Contract. Once this re-
quirement is satisfied, the code, containing the package as a dependency, is pushed
to the CI/CD System. The CI/CD System, while building the application, does
itself not rely on any possible integrity information provided with the code, instead
checking the integrity of any dependencies consumed with the Smart Contract, again
ensuring that the packages consumed conform to the standard set by the original
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publisher of the package. This ensures that the application built by the CI/CD
System, and being delivered to the Consumer, does not contain any unwanted and
possibly malicious code due to violation of trust between the members of the supply
chain.

Central Authority

Legitimate absolute Chain of Trust

writes

stores integrity

information

Package Author
gets published to

Package
Private


Package

Registry

checks package integrity

consumes package

and confirms integrity

produces

CI/CD
writes

specifies package

version

consumes in development

Application Author
gets pushed to

references

Application

Code Safe Application

Smart Contract

checks package integrity

Figure 18: The absolute “Chain of Trust” for the consumption of a package

The proposed K9 System will include both the Central Authority in the Form of
a smart contract and augmentations for the build process to enable the use of this
smart contract.

Note: The view presented here is from a very high level of observation. The smart
contract alone will not secure the whole supply chain, but augments existing secu-
rity measures. The “distance travelled” of the code from the developer of both the
package and the application needs to be secured as well. This is not accomplished
by the smart contract, but instead (as shown in section 4.5.2) by existing security
measures of the environment where the K9 Agent is to be deployed. These measures
include securing the code repositories by leveraging integration between existing en-
terprise domain controllers with the IAM systems of the repository/cloud provider.
In this way, scaling can be ensured and integration with existing systems is sim-
plified. In the same vein, the key(s) used to access the smart contract need to be
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administered in some way as well. With the proposed deployment of the K9 Agent,
this would be accomplished by storing the key(s) with existing cloud services and
controlling access with the aforementioned IAM systems of the cloud provider, to
ensure that CI/CD systems on the cloud platform can access the keys, while keeping
them safe from unauthorized access. This pattern was also used to implement the
K9 System’s PoC in section 4.5.2. The “full” COT, including the auxiliary systems
described here, can be found in the appendix (Figure 39, Figure 40).

Use Case: Publishing a package

Package Publishing System
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and Version

Author

Smart

Contract
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Package

Registry
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Package Build System

<<include>>

Publish

Package


Code

check

Identity

Build Package

Figure 19: Use Case Diagram: Publishing a package

Functional requirements and requirements based on DCA characteristics are refer-
enced in this use case, depending on which requirement is relevant to the part of the
use case being described. Functional requirements are described in section 4.3, while
requirements based on characteristics are described in section 4.2. The requirements
are identified by their requirement IDs described in these sections.

In Figure 19, the use case of an author publishing a package has been detailed.
There are several actors involved in this process:

1. Author: The author develops the package and makes changes to it. Once
there are changes made that warrant the publishing of a new version of the
package, the author commits these changes in a code repository, publishing
the package code. To facilitate this, the author must be authenticated with
the registry (R-F1), otherwise being barred from contributing code to it.
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2. Identity Provider: The Identity Provider (IDP) can authenticate users
based on credentials that are provided to him (R-F1). The IDP further can
provide information about users, based on claims that are stored in his user
registry. These claims can be used to authorize users to do certain things,
based on groups or roles that can be applied to users(R-F2). In this case, the
IDP ensures that users trying to commit code to the package registry belong
to a group of users allowed to do so.

3. Smart Contract: The smart contract stores information on the blockchain.
In this case, the information stored is information about package versions
associated with SHA1s representing a hash of a tarball (R-F4, R-F6, R-C3,
R-C4, see: section 2.2.2) of the files of the package2. This information can
be provided to the smart contract by authorized user accounts, identified by
a key pair.

4. Private Package Registry: The Private Package Registry contains the
packages that are published by the package publishing system. These are
stored and can be distributed by requesting them based on name and version
of the package.

These actors correspond to the systems shown in the System Context diagram Fig-
ure 20.
The publishing of a package by an author thus includes the following steps:

1. Publish Code: The author publishes the code for a new version of the pack-
age to the code repository.

2. Check Identity: The Package Build System ensures that the author has the
right to contribute code to the repository. If this is not the case, the commit is
rejected. This step includes the use of an IDP (R-F1). This system can verify
to the Package Build System that the author has the rights to contribute code
to the repository and thus publish new package versions(R-F2).

3. Build Package: Once it has been verified that the author of the new code
is legitimate and allowed to contribute, the build system takes the code and
builds it into a new version of the package.

2SHA1 was chosen to be compatible with older NodeJS projects, SHA512 hashes are available in current versions
of NodeJS, but not guaranteed, see section 2.2.2
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4. Publish Package: Once the build system finishes building the package, the
Package Publishing System publishes the package to the Private Package Reg-
istry. This involves packing the package files into a tarball (see: section 2.2.2)
and generating a SHA1 over this compressed archive.

5. Publish Hash, Name and Version: The SHA1, together with the name
and version of the package built in the last step, are published to the smart
contract on the blockchain (R-F4, R-F6). This way, the package (identified
by its name) and the relevant version are associated with the SHA1. This
information is stored on the blockchain through the smart contract, ensuring
maximum protection against manipulation, and through the architecture of
the smart contract, making it available to everybody.
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Figure 20: C4 System Context Diagram: Publishing a package
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Figure 21: Use Case Diagram: Consuming a package
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Functional requirements and requirements based on DCA characteristics are refer-
enced in this use case, depending on which requirement is relevant to the part of the
use case being described. Functional requirements are described in section 4.3, while
requirements based on characteristics are described in section 4.2. The requirements
are identified by their requirement IDs described in these sections.

In Figure 21, the use case of a consumer downloading an internal package has been
drawn up. This process includes the following actors:

1. Consumer: The consumer downloads packages to use them in his own inter-
nal processes. In the context here, the consumer is a CI/CD system automat-
ically pulling packages from the Private Package Registry.

2. Smart Contract: The smart contract stores information on the blockchain.
In this case, the information stored is information about package versions
associated with SHA1s representing a hash of a tarball (R-F4, R-F6, R-C3,
R-C4, see: section 2.2.2) of the files of the package. The smart contract can
provide this information to any user requesting it, only requiring the name
and version of the package the information is requested about (R-F5, R-C4,
R-C5).

3. Private Package Registry: The Private Package Registry contains the
packages that are published by the package publishing system. These are
stored and can be distributed by requesting them based on name and version
of the package.

These actors correspond to the systems shown in the System Context diagram Fig-
ure 22.
The consumption of a package by a consumer thus includes the following steps:

1. Download Package: The Consumer possesses a package name and version
and wishes to attain the files associated with this tuple. This step includes
the steps “Check for Hash with Name/Version” and “Log Package if not on
Smart Contract” and will only conclude successfully if both these steps do not
fail. If a hash has been obtained from the smart contract, it will be checked
against the hash of the downloaded files. If it matches, the process concludes
successfully, if not, an impostor package has been found on the registry and
an alarm is raised. If a package is not found on the Smart Contract, it is
assumed external and logged for auditing (R-F5, R-F7, R-C5).
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2. Check for Hash with Name/Version: The name and version of the pack-
age requested are presented to the smart contract. The smart contract re-
sponds with the SHA1 of the package version requested. If the package is not
found by name on the smart contract (meaning it is an external package) the
step “Log Package if not on Smart Contract” is invoked(R-F5, R-F7, R-C3,
R-C4). If the version is not found (meaning a malicious version was included
in the application), an alarm is raised and the step fails.

3. Log Package if not on Smart Contract: Names and Versions of packages
not found by name on the smart contract are logged for auditing (R-F7). This
enables insights into which packages were consumed from external registries
and creates a “Software Bill of Materials (BOM)” that can be leveraged for
auditing if any vulnerabilities of publically available packages become known.
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Figure 22: C4 System Context Diagram: Pulling a package

69



Chapter 4. Developing a System to prevent Dependency Confusion Attacks

4.5.2 Technical Architecture

Smart Contract

The Smart Contract constitutes the centerpiece of the technical architecture. It
facilitates persisting data on the blockchain (see subsection 2.2.3), specifically In-
formation about packages that are published to the internal package registry. This
is stored in a three-tier Structure (compare Figure 23), consisting of a Package List
containing all Packages available in the contract, indexed by the md53 hash of the
package’s name4. Every instance of such a Package includes the name of the pack-
age and a list of all available versions of the package. Thus, more than one package
can have its versions stored with one smart contract. Each instance of a Package
Version in this list then contains information pertaining to one published version of
the package in the internal registry. This information includes (Table 9):

Table 9: Information stored on the Blockchain via Smart Contract

Identifier Description
Package Author the account address of the author/publisher of the package

version
Package Name The name of the package, identifying which package the

version belongs to
Package Version The version number of this particular package version,

structured the same as the package version published to
the internal registry, according to SemVer section 2.2.1

Package Hash The SHA1 of the package tarball (compare section 2.2.2),
as published to the internal registry

Further, the smart contract allows for a degree of authorization and authentication.
The latter is provided via the blockchain networks integrated account system, based
on a public-private-key architecture (compare subsection 2.2.3). This ensures that
all direct users are part of the network. Authorization is more important in this
case, as everybody in the network is allowed to request information from the smart

3An MD5 hash has been chosen due to its relatively low character count, which makes it fit into a fixed length data
type variable in the smart contract code (Char32), increasing performance and lowering execution cost. Since
this hash gets generated from the name and version of the package when inserting its integrity information and
in order to retrieve said information, collisions are unlikely, since in both cases, the strings are known previous
to being hashed.

4Indexing by a hash, whose length is known, reduces memory load and improves performance, which are directly
related to cost on the blockchain, while preserving the ability to search ”by name” since the name can be hashed
off-chain
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PackageList

+ packages: List<Package>

Package

+ package_versions: List<PackageVersion>

+ package_name: bytes32

PackageVersion

+ package_author: address

+ package_name: bytes

+ package_version: bytes16

+ package_shasum: bytes

Figure 23: Package versioning structure in K9 Smart Contract

contract, but not everybody is allowed to contribute information. To this end, two
“user groups” have been established (Table 10):

Table 10: User groups in the K9 Smart Contract

User Group Description
Owner The “Administrator” of the smart contract, allowed to

make changes and/or unpublish the contract. Only the
owner can add and remove contributors to the contract.
Additionally, the owner can transfer ownership to another
account.

Contributor Contributors are able to add new packages and package
versions to the contract

In addition, the contract keeps a catalog of package names that can be returned to
a client to quickly allow the client to ascertain if a given package is included in the
contract’s storage. In case of such a client request, the whole list is returned instead
of individual requests, so that traffic is kept to a minimum, further reducing cost
(any request to a smart contract will incur “gas fees”, see subsection 2.2.3), since the
system will try to check if any of a given manifests dependencies have information
about them stored with the contract. Since these dependencies are commonly num-
bered in the thousands, a single request to the contract to filter out candidates that
can then be individually checked is preferable to checking every dependency. To
facilitate using the previously mentioned package name list, the package informa-
tion storage functions, and the package information retrieval functions, the contract
provides several methods:

K9 Agent

The K9 Security Agent was developed as a CLI program to be distributed as a com-
piled binary to the CI/CD environments via a shared, read-only, storage space in
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Table 11: Methods of the K9 Smart Contract

Function Description
storeHash Stores a SHA1 of a package, together with information

about the package. Takes the SHA1, package name, pack-
age version, MD5 hash of package name and version and
MD5 hash of the package name as arguments. When ex-
ecuted successfully, returns the MD5 hash of name and
version

getShasum Returns package information (in the form of a Package
Version (see Table 9)) for a specific version of a package.
Takes an MD5 hash of the package name and an MD5 hash
of the name and version as arguments.

getAllPackage-
Names

Returns the list of all package names to enable the client to
filter what packages can be checked against versions stored
with the contract.

the form of an AWS S3 Bucket. This decision was reached because it makes it easy
to control the distribution of the program, which has no dependencies to be installed
with it, to the environments, while keeping the effort of replacing the program be-
ing distributed on release of a new version minimal in the development/evaluation
phase. This includes the possibility of changing it to a more controllable, compli-
ant process of distributing the tool with a prebuilt build environment when it has
reached enough maturity to be used on a wider breadth of projects (compare the
ADR in section A.2).
Furthermore, the K9 Security Agent is distributed as one tool that can both pub-
lish package version information to the smart contract, and request this information
from the contract.

Publishing: In the publishing mode (compare Figure 24), the K9 Agent requires
the build environment to build the package beforehand and publish it to the internal
registry. Crucially, the output that npm produces in this step needs to be piped into
a JSON-File and made available to the K9 Agent. By default, the system is set up
to try and use any file named package-info.json in the current directory, but this
can be overridden with the parameter --package_info which can be supplied with
a different file name. Following this, the K9 Agent will extract the package name,
version number and integrity SHA1 from this file, which represents the integrity of
the tarball published to the internal registry. The K9 Agent, which will have to be
supplied with the contract and account address in form of a (default, but overridable)
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k9-config.json file or as separate arguments, will then try and authenticate with
the contract via a private key. This private key needs to be supplied to the K9
Agent when invoking the program, and cannot be loaded from a file. This is to
encourage that the private key is kept in a secure system (in the case of the PoC
implementation, AWS Secrets Manager), and not supplied to the build environment
in an unsecured file. If the key can successfully authenticate the K9 Agent to
the K9 Smart Contract, the package information is published to it. This requires
the account the private key is associated with to either have owner or contributor
privileges.

Note: In this iteration, the owner of the contract has all the rights of a contributor
to the contract, plus administrative rights to the contract. In a mature version of
this system, the owner would not have contributor rights, instead being relegated
to only administrative duty, while contributors only interact with the contract on a
package information publishing level. This would be preferable, as it separates the
areas of control more clearly.

CI/CD System K9 System

Build

Package

includes

Publish to

internal Registry

Pipe Output

into File

Extract SHA1SUM

from Output File

includes

Publish Package

Name, Version, 

SHA1SUM to SC

Load Private Key

of Owner/Contributor


Account

Start End

Figure 24: Flow: K9 Agent publishing a package

Consuming: In the consuming mode (compare Figure 25), the K9 Agent begins by
scanning for a lockfile, either by looking for the default package-lock.json or, if
supplied with the --lockfile argument, for the supplied file name. If a lockfile isn’t
found, the K9 Agent looks for a package manifest package.json and generates a
warning, assuming the unsafe (for automated builds) npm install command to be
used. The K9 Agent then gets a list of all packages of which information is stored on
the smart contract by using the smart contract’s getAllPackageNames functionality
(see Table 11). This list is then used to filter the lockfile of the current application
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against packages that can be verified against information from the smart contract,
implying them to be internally developed and distributed packages. The names
and versions of all packages that cannot be verified against the smart contract are
cataloged as well and formatted into a JSON-file for auditing or similar, effectively
creating a software BOM for external packages. This list is then saved to the file
system of the build environment. All internal packages discovered in the lockfile this
way are flagged for verification. In the next step, all previously flagged packages are
then checked against information about them from the smart contract. For each of
these packages, a request is sent to the smart contract on its getShasum method,
with the version of the package specified in the lockfile. The information returned
from the smart contract will lead to either of three outcomes:

1. Version not found on contract: The version of the package specified in the
lockfile has been published without storing it with the smart contract. This
means a version was possibly published on a public repository with an inflated
version number. Malicious activity is likely.

2. Version found on contract, SHA1 mismatch: The version of the package
specified in the lockfile has been published and stored with the smart contract,
but the package version content of the consumed package has been modified.
Either a malicious version is being consumed from a public registry, or the
package has been modified in transit. Malicious activity is likely.

3. Version found on contract, SHA1 mismatch: The version of the package
specified in the lockfile has been published and stored with the smart contract.
The consumed package’s contents match the published ones. Malicious activ-
ity is unlikely.

If any of the first two possibilities occur, the relevant package will be flagged and
an alarm raised. The K9 Agent will check all packages, but output an error to
stderr and finish with an exit status of 1, producing an error and breaking the
build process.

CI/CD Environment

The architecture of the CI/CD environment is largely the same as the one charac-
terized in section 4.4.1 for the vulnerable CI/CD environment. This is intentional,
as the K9 Agent fulfills the general requirement to be easily integrable into existing
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Figure 25: Flow: K9 System consuming a package

infrastructure. Thus, only minimal changes to the build environment of the system
are needed. This new CI/CD environment is shown in Figure 26. Note, that at this
stage, the K9 Agent is distributed via an S3 Bucket, a shared storage space that
allows all build environments in the AWS account to (read) access the S3 Bucket
to download the K9 Agent binary. In the stage of development and evaluation, this
style of distribution was chosen to ease deployment of new versions of the K9 Agent.
At a more mature stage of the K9 System, a distribution via pre-built build images
is preferred, since the use of a specific build image can be mandated and audited
with cloud infrastructure security tools5. Compare Figure 41 in the appendix for
that architecture.

Changes from the vulnerable architecture are comprised only changes to the build-
spec in the build step of the pipeline (AWS CodeBuild in Figure 26). In the build
step, several changes have been made to firstly procure the K9 Agent, and secondly
access and retrieve the necessary private key to connect to the smart contract, and
in the case of publishing, store information on the contract. The private key, host
address (entry point for the smart contract interface) and contract address needed
to communicate with the smart contract are stored with AWS Secrets Manager,
and provided to the build environment via dynamically set environment variables
(pointers that only produce values when accessed, storing the value encrypted in
AWS Secrets Manager and only exposing it via Tokens that get filled with values at
runtime and the values redacted from logs).

Publish Pipeline: In the package publishing pipeline, the buildspec specifies the

5For example, AWS Security Hub https://aws.amazon.com/security-hub/
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Figure 26: K9 System CI/CD architecture (development/evaluation stage)
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following behavior:

1. Install AWS CDK tooling

2. Download the K9 Agent from the shared S3 Bucket

3. Log in to the internal registry

4. Run a check on all dependencies included with the package to be built and
published with the K9 Agent

5. Install dependencies and build the Package

6. Publish the package to the internal registry and output resulting information
into a JSON-file

7. Publish the information to the K9 Smart Contract using the credentials pro-
vided to the build step from AWS Secrets Manager

Note: In the implementation of the publishing step, a preliminary check with the
K9 Agent is made against the dependencies of the package to be published. This
is to ensure that no impostor packages are included with the package that would
then be recorded as “clean” on the smart contract. This does represent a certain
“hen-and-egg” problem for the ultimate “precursor” package, so great care must be
taken when the first package ever is published with this system.

The buildspec for the publish-pipeline is shown in Listing 8 in section 6.2.1. In the
listing, the use of tokens for private key, smart contract host (interface address) and
contract address can be observed.

Consume Pipeline: In the package consumer/application build pipeline, the build-
spec specifies the following behavior:

1. Install AWS CDK tooling

2. Download the K9 Agent from the shared S3 Bucket

3. Log in to the internal registry

4. Run a check on all dependencies included with the application to be built and
published with the K9 Agent

5. Install dependencies and build the application
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6. Synthesize the application with AWS CDK Tooling

If there are any irregularities detected by the K9 Agent in step 4, the resulting exit
code 1 (see section 4.5.2) will cause the whole pipeline to fail, and produce a warning
in the build logs for DevOps personnel to interpret the failure.

The buildspec for the consume-pipeline is shown in Listing 9.

1 npm install −g aws−cdk

2 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

3 ./k9−linux checkall −p $K9_PRIV_KEY −h $K9_HOST_ADD −c $K9_CONT_ADD

4 npm ci

5 npm run build

6 npx cdk synth

Listing 5: Buildspec of K9 secured application pipeline

Importantly, the K9 Agent is used to scan dependencies before they are installed.
This is achieved by using the resolved property (see section 2.2.2) of the lockfile.
This URL can be used to infer the registries host address where the package is located
(for example https://registry.npmjs.org/), which can then be used to access the
package metadata API by querieing <host>/<package_name>/<package_version>,
so for example https://registry.npmjs.org/master-test-component/0.1.1, to
get the full package metadata as saved on the registry for a specific version of the
package. The metadata includes the SHA1 of the package archive, which is then
checked by the K9 Agent against the SHA1 stored with the K9 Smart Contract. The
integrity of the package archive can thus be checked before downloading the package,
ensuring that if a mismatch is detected, no packages with potentially malicious code
are downloaded, since the build process would be stopped before proceeding to the
installation step (npm ci).
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5 Limitations and Constraints

When developing the K9 System, while solving the problems associated with pre-
venting the DCA, concessions have to be made in order to facilitate producing a
functional system that is realistically deployable and usable within the scope of this
document. This produces limitations in regard to the system, both functionally and
in terms of usability. In the following section, limitations and constraints that have
been identified will be discussed, and pointers to possible solutions given, where
possible.

5.1 Securing the Source Code

One constraint of the system, especially in regard to publishing internal packages,
is that the “distance travelled” of the code that is to become a package published
to the internal registry, is not secured in terms of the K9 System. In this regard, it
is assumed, that the entity implementing the K9 System has put measures in place,
which ensure that

• Code written by developers and committed to a repository is secured against
manipulation on its way to the code repository; Meaning only code intended
to by the developer reaches the code repository

• Repositories are secured against unauthorized access from parties other than
the package authors; Meaning no code can be committed to the repository by
parties other than the original package author

Both of these options would mean possible circumvention of the functionality of the
K9 System by exploiting vulnerabilities in the underlying infrastructure that are not
related to the DCA the K9 System protects against.
Both of these attack vectors could possibly be defended against by augmenting the
K9 System to also validate the source code provided. This could be achieved by
storing the developer’s account/public key within the smart contract and using a
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code signature generated with the developer’s private key to validate the source
code.

5.2 Administrating the Private Key(s)

Another constraint comes with the nature of the smart contract or blockchain ecosys-
tem which the K9 System integrates into. To interact with the smart contract, a
private key representing access to an account on the blockchain must be adminis-
tered. This cannot be avoided when integrating with blockchain-based services. In
the case of the prototype of the K9 System presented here, this key must be man-
ually administered and provided to the system via command line argument. This
also means, that personnel interacting with the CI/CD system might have access
to the key. In general, the assumption is, that any organization integrating the K9
System would either

• Centralize control over the key to a (possible team of) key administrators;
Since asymmetric key pairs are used many software development (-adjacent)
services, it is likely that there is a role defined within the organization for
administrating them

• Give full control of the CI/CD process for the respective package to the devel-
oper of the package, including administrating the private key (DevOps). This
way, signing of the code as described in section 5.1 could be accomplished with
the same key; To implement this, the K9 Smart Contract’s “Contributor List”
(see section 4.5.2) could be used

5.3 Using SHA1 Hashes

An important limitation of the K9 System, as described in section 4.5.1, is the
use of only SHA1 hashes for integrity checking. This limitation is in place, since
npm offers the feature of either using SHA1 or SHA512 hashes in the lockfile, but
does not guarantee for the SHA512 hashes to be available on older lockfiles, and
on certain platforms1. SHA1 has been shown to be not hash collision proof2 and is
mostly deprecated. A necessary feature for future versions of the K9 System would
therefore be the automated detection of available SHA512 hashes, and using them

1https://github.com/npm/npm/issues/16938
2https://shattered.io/
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instead of the SHA1 hashes where possible. This feature has been omitted from the
PoC version due to time constraints.

5.4 Using a (public) Blockchain

Less specifically than described in section 5.2, the choice of using a public blockchain
in this implementation of the K9 System also brings with it some constraints and
possible risks. For one, every transaction, for example deploying the K9 Smart
Contract or storing a version, has to be paid for in the associated blockchain’s
cryptocurrency. The blockchain used to implement the prototype is the Ethereum
blockchain, which between January 2020 and May 2022 showed price fluctuations
of up to 341%3. The choice was motivated (also compare the ADR section A.1) by
the need to use a database or equivalent storage system that is highly resistant to
manipulation and easily accessible as well as highly available. A distributed database
- which the blockchain can be described as - fits this requirement. The choice of the
public Ethereum blockchain was made based on the fact that a distributed database
is labor-intensive to set up and maintain, and would have been impossible to also
fit in the timeframe allotted to the development of the system in the scope if this
document.
If the K9 System were to be deployed in an enterprise context where relying on
cryptocurrency to deploy the contract and store package information within it is
not an option, alternatives to consider would be managed services such as AWS
Managed Blockchain4 or Amazon Quantum Ledger Database5 which integrate into
existing solutions on, in this example, AWS, without involving the organization in
cryptocurrency speculation.

5.5 Using a Blockchain Access Provider

In the implementation of the K9 System presented here, access to functions of the
blockchain (including the smart contract) was mediated using a blockchain access
provider. This access provider enables interaction with the blockchain without host-
ing one’s own node in the network, instead providing access via HTTPS-based in-
terfaces. In the scope of the PoC this method was used to simplify access to the

3Rolling 10-day realized volatility, benchmarked against the S&P 500; taken from portfolioslab.com through
Statista, https://www.statista.com/statistics/1278411/ethereum-price-swings/, last accessed July 4th, 2022

4https://aws.amazon.com/managed-blockchain
5https://aws.amazon.com/qldb/
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Ethereum Blockchain with the access provider “Infura”6. This carries the risk of re-
lying on a third party to mediate access to the blockchain, introducing an additional
point of failure. This risk was taken, instead of hosting an own node, for reasons of
both restricted monetary and temporal budget in development7.
In an actual, enterprise level deployment, similar measures to the ones described in
section 5.4 might be taken, or the decision to host a full Ethereum node might be
made, to mitigate this risk.

5.6 Simplifying OSINT for DCA

The last limitation of the system as implemented is the increased attack surface
publically (on the blockchain) distributing the names of internal packages might
bring. Discovery of these names is an important part of preparing a DCA (compare
section 2.4), meaning public disclosure would bring the risk of malicious actors being
able to more easily target these packages.
This is a realistic risk, but at the same time, it is also possible to monitor public
registries for these names automatically (since the package names are publically
known) and enact defensive measures accordingly, such as sending takedown notices
to the involved parties.

6https://infura.io/
7See requirements for hosting an Ethereum node here: https://ethereum.org/en/developers/docs/nodes-and-

clients/run-a-node/
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6 Evaluating the System by Proof of Concept

6.1 Proof of Concept Attack on vulnerable Cloud-CI/CD-System

6.1.1 Attack Setup

Malicious Impostor Package

To facilitate the attack, the first step was to prepare a malicious package to distrib-
ute and inject into the vulnerable Continuous Integration/Continuous Deployment
(CI/CD) system. The package was derived from the original package and modi-
fied. The modification consists of an additional script in the “scripts” section of the
manifest (see section 2.2.2). In this case, the “postInstall” script was modified, such
that on successful consumption of the package by the build system, an output to the
stdout of the build system is triggered. The successful attack can thus be validated
by looking at the build logs of the system (the “scripts” section of the manifest is
explored in section 2.2.2). Actual malicious behavior was not implemented, since
the proposed system is not intended to scan for malicious behavior, and thus the
risks and potential legal problems with providing known malicious software on pub-
lic platforms are avoided by only including a warning in the build system, preventing
harm to unsuspecting users accidentally consuming the package.
Additionally, the manifest file had its version updated, producing one package with
the same version as the legitimate package in the internal registry (0.1.1), several
PATCH versions (0.1.2, 0.1.3) and one with a significantly higher MINOR version
(compare section 2.2.1), 0.99.4. These packages were then uploaded as public pack-
ages to the public node package manager (npm) registry1. Additionally, a notice
was provided in the description of the package to prevent any potential unsuspecting
victims accidentally downloading it, since the attack can only be realistically simu-
lated with a package available to everybody using the public npm registry (compare
Figure 27).

1https://www.npmjs.com/package/master-trial-package
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Figure 27: Description and statistics for package used in attack on npmjs.com

This malicious package contains an AWS CDK compatible construct, which is ex-
ported to be used with an AWS CDK TypeScript Application. The construct con-
tains an AWS Lambda Function returning a message that is different to the legiti-
mate packages lambda function (“Hello! You’ve hit <request path>... But the evil
one!” vs. the original’s “Hello! You’ve hit <request path>!”), as well as outputting
a message after installation of the package.

The legitimate package is still available on the private registry in its original version,
as pictured in Figure 28

Figure 28: Legitimate package in private registry

Vulnerable Application

The vulnerable application was prepared by developing an example application based
on AWS CDK, which deploys an AWS Lambda Function. This Lambda Function is
imported from the construct of the Malicious Impostor Package. The architecture
and technologies of the vulnerable application are described in detail in section 4.4.1.
This Application is then deployed into the vulnerable CI/CD environment described
in section 4.4.1.
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The application’s package manifest is provided in Listing 6 (development dependen-
cies and scripts have been omitted since they are not relevant to the attack on the
vulnerable application’s side).

1 {

2 "name": "master−code",

3 "version": "0.1.0",

4 "bin": {

5 "master−code": "bin/master−code.js"

6 },

7 "scripts": {

8 "build": "tsc",

9 "watch": "tsc −w",

10 "cdk": "cdk"

11 },

12 "devDependencies": {

13 [...]

14 },

15 "dependencies": {

16 "aws−cdk−lib": "2.23.0",

17 "constructs": "^10.0.0",

18 "master−trial−package": "^0.1.1",

19 "source−map−support": "^0.5.21"

20 }

21 }

Listing 6: Vulnerable Application’s Package Manifest (package.json)

Note that in this case, installing the vulnerable dependency master-test-component
in the development environment by the author of the vulnerable application has au-
tomatically set it to install newer MINOR and PATCH versions (see section 2.2.1).

6.1.2 Attack Execution - Naïve Pipeline

With the vulnerable application now listing the dependency in its package manifest,
the scenario begins with the developer committing the new version of the application
into the CI/CD pipeline via the application repository. To accomplish this, the
developer has to be authenticated with the repository. With this Proof of Concept
(PoC), AWS CodeCommit is used, which requires authentication and authorization
via AWS Identity and Access Management (IAM)2. In an enterprise context, this
would be accomplished by integrating AWS IAMwith the enterprise domain services,
for example by mapping Active Directory identities to AWS IAM Roles. In this case,

2https://aws.amazon.com/de/iam/
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the developer might log into the AWS Console with his enterprise Active Directory
credentials, and be assigned the AWS IAM role of “CODE_CONTRIBUTOR”,
which would allow him to push code to repositories with policies in place to allow
proprietors of this role to do so.
After the repository acknowledges receipt of the new commit, the sourcing and build
processes of the vulnerable CI/CD pipeline (see section 4.4.1) will trigger. In the
build step, after the installation step, the first sign of a successful attack is the
message output by the compromised packages’ postInstall-script (see Figure 29).

Figure 29: Message from the impostor package in build step

After the CI/CD pipeline has finished its run, the lambda function contained in the
malicious package has been deployed with the application, as can be seen by the
response of the lambda function when triggered by an HTTP request (Figure 30)

Figure 30: HTTPS response of the lambda function from the impostor package once de-
ployed via naïve pipeline

At this point, the application has fallen victim to the Dependency Confusion Attack
(DCA). Both the build environment and the actual application have been infiltrated
by malicious code. At this point, it should be noted that this version of the attack
could have also been prevented by setting up the build environment in a specific way.
As written in the pipeline, this version of the attack assumes a naïve pipeline to suc-
ceed. This means that the pipeline uses a standard npm install command instead
of the more appropriate npm ci (compare Listing 4). Using the latter would have
allowed npm itself to use the lockfile to ascertain if the packages pulled from the reg-
istry are the same ones mentioned in the lockfile (the lockfile also contains integrity
information, compare section 2.2.2). However, this does not diminish the danger of
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DCAs. For one, npm ci has been added to npm in 20183, which means some build
pipelines released prior will still not implement npm ci (Anecdotal evidence from
enterprise DevOps substantiates this claim), or it is not used since lockfiles can be
incompatible between versions of npm4. The latter point is a security issue in and
of itself, but manifests itself in real world DevOps fairly often5.
On the other hand, another channel for DCAs to execute successfully is via the
developer. If the lockfile already contains the checksum of the malicious version, no
deviation will be detectable. This attack vector will be explored in the following
section.

6.1.3 Attack Execution - Naïve Developer

As previously discussed, one other attack vector for the DCA to execute successfully
is the infiltration by ways of the developer already pulling the package from the
wrong source. In this case, either:

1. The developer is not logged in to the private registry

2. The package manager gets confused between packages of the same version on
different registries and chooses the malicious one

3. The package manager is configured to choose higher versions and pulls a ma-
licious package with a higher version than is actually available from private
registries

Either of these options leads to the impostor package being present both in the
package manifest and the package lockfile. This second scenario then continues the
same as the first one, with the developer committing this “infected” manifest and
lockfile into the code repository. The repository is still secured to only accept code
from a specific group identified by roles. In this case, compared to the unsecured
pipeline of the attack shown prior, the build step has been changed to incorporate
the npm ci command6. This slightly changed buildstep is shown in Listing 7.

3https://github.com/npm/npm/releases/tag/v5.7.1
4https://github.blog/2021-02-02-npm-7-is-now-generally-available/#changes-to-the-lockfile
5Stack Overflow shows 77 Questions for “npm WARN old lockfile”, as well as 155k views for the most popular

question for the topic, https://stackoverflow.com/search?q=npm+WARN+old+lockfile, last accessed 2022-06-14
6https://docs.npmjs.com/cli/v8/commands/npm-ci
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1 npm install −g aws−cdk

2 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

3 npm ci

4 npm run build

5 npx cdk synth

Listing 7: Buildspec of Vulnerable Application with npm ci

The sourcing and build process will run their regular course, until at the installa-
tion stage, the payload of the malicious package is downloaded with the malicious
package itself and executed (see Figure 31). This happens despite npm running an
integrity check on the package, since the malicious package has had its integrity
information saved to the lockfile already. As expected, the application utilizing the
package has been infected as well (compare Figure 32 for the lambda function HTTP
response).

Figure 31: Message from the impostor package in build step of best-practice pipeline

Figure 32: HTTPS response of the lambda function from the impostor package once de-
ployed via best-practice pipeline
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6.2 Proof of Concept Attack on hardened Cloud-CI/CD-System

6.2.1 Attack Setup Hardened Pipeline

Publishing a Verified Package Version

To facilitate a secure consumption of the internal package, this package first has to
be published in the way outlined in section 4.5.1. The package published as a verified
version contains the same code as the vulnerable package published in the Attack
PoC that was impersonated by the impostor package (see subsubsection 6.1.1).
In the hardened process, this package is published through a pipeline hardened by
the K9 System. In the publishing step, the K9 Agent ensures, that the packages’
integrity information is stored with the smart contract, and associated there with
the version and package name of the package being published.
The hardened process assumes that the code of the package has a secure way of being
delivered to the code repository. The assumption is further, that this security exists
in the form of a domain controller, for example an Active Directory service, and
authenticating, as well as authorizing, contributors to the repository by integrating
with the repository’s own cloud IAM system. In this way, it can be assumed that
the code will be delivered with unchanging integrity to the code repository. This will
also ensure that the chain of trust (see section 4.5.1) is unbroken. At this point, the
build step triggers. The build step will bridge the chain of trust to a new authority,
the K9 Smart Contract. To facilitate this, the K9 Agent is used in conjunction with
a private key that authorizes use of the K9 Smart Contract. The private key itself is
also secured with IAM policies, authorizing the CI/CD system containing the build
step to retrieve it. In this way, the build step gets code delivered that is guaranteed
by the domain controller in conjunction with the cloud IAM system to be the code
the author (authenticated with the domain controller) has committed. This code is
then built into a package, the integrity information of which is then published to
the K9 Smart Contract, using the private key. In this way, the integrity information
on the contract can trace a chain of trust back to the original author.
As the K9 Smart Contract has a very high manipulation resistance due to its
blockchain-bound nature (see subsection 2.2.3), the integrity information it delivers
can be assumed to be true, since the chain of trust up until delivery of the informa-
tion to the contract has been ensured.
This secure publishing of the package has been implemented within the same in-
frastructure as the unsecured publishing of the vulnerable package published in the
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Attack PoC (see subsubsection 6.1.1).
The key differences in the secure implementations are:

1. Providing the K9 Agent to the package CI/CD pipeline with a shared storage
medium (e.g. AWS S3 Bucket)

2. Providing the Private Key and several other pieces of information to the
CI/CD environment to use the K9 Agent via a secure interface, protected
by IAM policies (e.g. AWS SecretsManager)

3. Using the K9 Agent with the private key to publish the integrity information

The buildspec for this so modified CI/CD build step is shown in Listing 8. Note,
that besides publishing integrity information, the K9 Agent is also used to evaluate
the dependencies of the package to be published, to ensure no integrity information
of infected packages is stored as “trusted” with the K9 Smart Contract.

1 npm install −g aws−cdk

2 aws s3 sync s3://k9secured−exe−bucket .

3 chmod +x ./k9−linux

4 aws codeartifact get−authorization−token −−domain master−registry−domain −−domain−

owner 365161439830 −−region eu−west−1 −−query authorizationToken −−output text >

registry_token

5 ./k9−linux checkall −p $K9_PRIV_KEY −a $K9_HOST_ADD −c $K9_CONT_ADD −−auth_prefix

$K9_AUTH_PRE −−auth_suffix $K9_AUTH_SUF −−registry_prefix $K9_REGI_PRE

6 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

7 npm ci

8 npm run build

9 npm publish −json > package_info.json

10 ./k9−linux store −p $K9_PRIV_KEY −h $K9_HOST_ADD −c $K9_CONT_ADD

Listing 8: Buildspec of K9 secured publishing pipeline

Once these steps are completed, the package information is safely stored with the
K9 Smart Contract and thus the version established as a confirmed package version,
with associated integrity information. A successful run of this publishing action
can be seen in Figure 33. Note, that sensitive information consumed via the secure
interface (AWS SecretsManager), such as the private key, has been automatically
redacted from the log.
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Figure 33: K9 Agent successfully publishes package version
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Including K9 Agent in Application CI/CD Pipeline

With the package publishing pipeline augmented with the K9 System, implementa-
tion in the consuming application pipeline is necessary to ensure full protection. The
Application code itself is still the same as used in the vulnerable application (see
section 4.4.1). The same is applicable for the general layout of the CI/CD pipeline.
In order to easily integrate the K9 System in the real world, the modifications to
existing CI/CD systems need to be as minimal as possible (R-F3, see Table 7). The
same assumptions for authentication and authorization as described in section 6.2.1
are made, in order to confirm to R-F1 and R-F2. Through these, an uninterrupted
chain of trust can be assumed up until the moment of building the project while
consuming packages from internal and external registries. Here, the chain of trust
is augmented by use of the K9 Agent, by including integrity information from the
K9 Smart Contract to ensure a safe build (considering in this case only internal
packages that might be victims to impostors)
The build step will include first checking the available application information, in
the form of a lockfile, for known packages, which are assumed to be internal (com-
pare R-C1, R-C2, see Table 6). This is accomplished by generating a delta from
a list of packages stored on the smart contract (obtained from the same) with the
packages in the lockfile. These internal packages are then tested for official availabil-
ity of their version, and if yes, for their integrity. If all these steps can be completed
successfully, the build step will continue as normal.
This secure building of the application has been implemented within the same in-
frastructure The key differences in the secure implementations are:

1. Providing the K9 Agent to the application CI/CD pipeline with a shared
storage medium (e.g. AWS S3 Bucket)

2. Providing the Private Key and several other pieces of Information to the
CI/CD environment to use the K9 Agent via a secure interface, protected
by IAM policies (e.g. AWS SecretsManager)

3. Using the K9 Agent with the private key to verify the integrity of the consumed
packages

4. Providing a way to exfiltrate the software Bill of Materials (BOM) of external
packages used into a shared storage medium (e.g. AWS S3 Bucket)

Note: In the case of checking packages instead of publishing them, a private key is
used as well. This is necessary, since an account/wallet is needed to interact with
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the smart contract on the blockchain. In this case, the same private key as used in
the publishing step is used. Incidentally, this is a key that belongs to the “adminis-
trative” account with regard to the contract. This is not a necessity. The account
used for obtaining information from the contract can be any account associated
with the Ethereum blockchain. In this case, an existing account was used for rea-
sons of development and evaluation speed.

The buildspec for this so modified CI/CD build step is shown in Listing 9. Note the
“external-packages-compliance-list.json” being copied out of the build environment
into a separate S3 Bucket. This is done to allow auditing of the list of external
packages consumed (including their respective versions) at a later point in time.

1 npm update −g npm

2 npm install −g aws−cdk

3 aws s3 sync s3://k9secured−exe−bucket .

4 chmod +x ./k9−linux

5 aws codeartifact get−authorization−token −−domain master−registry−domain −−domain−

owner 365161439830 −−region eu−west−1 −−query authorizationToken −−output text >

registry−token',

6 ./k9−linux checkall −p $K9_PRIV_KEY −a $K9_HOST_ADD −c $K9_CONT_ADD −−auth_prefix

$K9_AUTH_PRE −−auth_suffix $K9_AUTH_SUF −−registry_prefix $K9_REGI_PRE

7 aws s3 cp external−packages−compliance−list.json s3://k9secured−log−bucket

8 aws codeartifact login −−tool npm −−repository master−registry −−domain master−

registry−domain −−domain−owner 365161439830

9 npm ci

10 npm run build

11 npx cdk synth −−quiet

Listing 9: Buildspec of K9 secured application pipeline

6.2.2 Attack Execution - Naïve Pipeline

The first attack pattern, introduced and successfully executed in subsection 6.1.2,
relied on the CI/CD pipeline being used without a lockfile. This attack will be
tested with the K9 System in use. The prerequisites are the same, the pipeline
operating with the not recommended subsubsection 2.5.2 npm install command
during package installation, and no lockfile being present. This means that no
package version or source is fixed. This setup - using a npm install command in a
CI/CD system - is not commonly not recommended as a best practice7.

7https://snyk.io/blog/ten-npm-security-best-practices/
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For this case, the K9 Agent, requiring a lockfile to accurately determine package
versions and sources, enforces this best practice. In case only a package manifest
(package.json) is present, the system operates under the assumption, that npm
ci is not used in the pipeline. In this case, the K9 Agent will stop the build and
produce an error recommending the use of a lockfile (compare Figure 34).

Figure 34: The warning generated when using the npm install command in a CI/CD
environment, stopped by the K9 Agent

In this case, the K9 Agent did not attempt to check the packages in the lockfile,
since no lockfile was provided. The usage of the lockfile is enforced as part of the
security concept, ensuring fixed versions specified to enable checking them with the
K9 Smart Contract. The attack in subsection 6.1.2 can thus be avoided.

6.2.3 Attack Execution - Naïve Developer

The second attack pattern, proven effective against an unsecured CI/CD environ-
ment in subsection 6.1.3, is being tested against the pipeline secured with the K9
System. The prerequisites for the developer are the same, being that he allowed ei-
ther a non-official version or an impostor version from another repository to intrude
into the lockfile and his local installation. In this setup, it may even be possible for
the private registry to “pull through” impostor versions. In Figure 35, an excerpt
from a lockfile is pictured, where an unofficial version that was not published to
the private registry was still available from that private registry, due to the registry
“pulling through” this version from the public registry. Other infiltration vectors
still include the developer not being logged into the private registry on his machine,
or the local client of the package manager getting confused between two of the same
packages for one version being available on both private and public registry and
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choosing the malicious one8.

Figure 35: A malicious package version ”pulled through” from the private registry in the
lockfile

The first possibility, an accidental version upgrade to an illegitimate version, is
attempted first. In this case, the version number in the package manifest was de-
liberately left as it was set when first installing the package with npm i master-
trial-package (see Listing 10). Note the caret range (section 2.2.1) that was
automatically set. This package manifest was then used to install all packages and
generate a new lockfile locally, on the developers’ machine. For this, the developer
logged into the private registry before executing the npm i command.
After this, a new lockfile has been generated (compare Figure 35), which has “pulled
through” the private registry the illegitimate version 0.1.3 of the package, due to
the caret range specified in the manifest. This means, that the DCA has already
succeeded on the developer’s machine, and now has to be detected and prevented
in the CI/CD environment.

1 [...]

2 "dependencies": {

3 "aws−cdk−lib": "2.23.0",

4 "constructs": "^10.0.0",

5 "master−trial−package": "^0.1.1",

6 "source−map−support": "^0.5.21"

7 }

8 [...]

Listing 10: Package Version in Manifest of Application

This manifest and lockfile are then committed to the application repository, setting
into motion the build process, which has been augmented with the K9 System. The
K9 Agent gets invoked before installing the illegitimate, possibly malicious version of

8This behavior is not documented in any of npms documentation, but unless other, better, explanations are
available, seems to have happened a number of times during the development and evaluation of the K9 System
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the package and compares the version specified in the lockfile (0.1.3) to the version
information available on the smart contract (only 0.1.1). The K9 Agent detects an
illegitimate version, and stops the build with an error (see Figure 36).

Figure 36: Malicious package version (non-official version) detected and build stopped

The second possibility, pulling an impostor version from a registry other than the
private registry, is attempted after the version confusion. In this case, the version
number in the package manifest was set to a fixed value (0.1.1). Other than that, a
login into the private registry was not conducted. This package manifest was then
used to install all packages and generate a new lockfile locally, on the developers’
machine, using the npm i command.
After this, a new lockfile has been generated (compare Figure 37), which has spec-
ified the legitimate version 0.1.1 of the package, but from the public registry (reg-
istry.npmjs.org).

Figure 37: A malicious package version from the public registry in the lockfile

This manifest and lockfile are again committed to the application repository. The
build process, augmented with the K9 System, starts again. The K9 Agent gets
invoked before installing the version impostor of the package and compares the
version specified in the lockfile (0.1.1) to the version information available on the
smart contract (only 0.1.1). The K9 Agent detects no illegitimate version, and
thus requests the integrity information for the package master-trial-package at
version 0.1.1 from the K9 Smart Contract. The K9 Agent then also requests
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integrity information from the source registry of the package specified in the lockfile.
Once the information has been delivered from both sides, the K9 Agent compares
the information from the K9 Smart Contract (nominal) to the information from
the registry (actual), detects a mismatch, and stops the build with an error (see
Figure 38).

Figure 38: Malicious package version (Impostor with mismatched integrity) detected and
build stopped

In both these cases, the K9 Agent, together with the K9 Smart Contract, has de-
tected a mismatch of the legitimate package version the developer intended to be
used, and the illegitimate package versions, both at other version numbers and at
the actual version number of the legitimate package, that were being injected into
the process.
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7 Conclusions

7.1 Summary

By analyzing the Dependency Confusion Attack (DCA), five characteristics have
been defined that can be used to develop measures to defend against these attacks.
The analysis consisted of a study of incident reports and an investigation into mali-
cious packages actually used to execute the attack. These characteristics were then
used, in conjunction with requirements of a technical and functional nature, to de-
velop requirements for a system that can successfully prevent DCAs in a cloud-based
Continuous Integration/Continuous Deployment (CI/CD) environment.
The system that was developed from the requirements consists of an agent, run-
ning locally within the CI/CD environment, and a smart contract, running on the
Ethereum blockchain. The agent is used to store integrity information about pri-
vate packages while these are being published. The same agent can then be used to
retrieve this information when the package is consumed, making it possible to spot
an impostor package. The integrity information is protected from manipulation by
the strong manipulation resistance of the blockchain.
Testing within an environment this system would be deployed in showed promising
results. While the control system exhibited a vulnerability to the attack, allowing
for a malicious, unofficial version and an impostor of an existing version to penetrate
the environment, the preventive system managed to identify an attack in both cases
for the protected environment, stopping the build process and preventing any in-
fected packages from reaching the CI/CD system. Additionally, performance, even
though not a criterion for this proof of concept, was strong enough to not influence
the build time of the application used to facilitate the Proof of Concept (PoC).
While the solution developed was successful in combatting the specified threat, using
a public blockchain-based smart contract, while providing manipulation resistance,
availability and reliable access, still poses the disadvantage of being reliant of cryp-
tocurrency to publish and interact with it. With cryptocurrency being subject to
extreme market swings, caution must be exercised.
Additionally, since file integrity information is used to validate packages against
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known good information, this system could be extended to be used with other pack-
age managers, as well as other software module sharing technologies, such as con-
tainer repositories.

7.2 Outlook

Having provided a workable solution towards the problem of DCAs, this does not yet
represent a finished product, nor one that would be deployable in this form in any
sort of scalable context. In this section, several points of possible improvement or
addition to the system will be presented, as well as a general outlook on preventing
DCAs.

7.2.1 The K9 System: Deployment

The K9 System in its current form - Agent and Smart Contract - is relatively easy
to deploy on a small scale, provided the K9 Agent can be distributed to the specific
CI/CD environments. This problem has been solved in the development stage of the
project by using a shared storage location, allowing the build system to download the
binary (see subsection 6.2.3). In the future, this might be streamlined by integrating
the K9 Agent into the build image provided to build environments, the practice of in-
house build images being prevalent already. This would also allow the enforcement
of using the K9 Agent to harden the build process (this concept schematically drawn
up in Figure 41).

7.2.2 The K9 System: Widening the Scope

One important limitation of the K9 System in its current form is its specific compat-
ibility with only node package manager (npm) as a package registry. The K9 System
supports multiple types of npm compatible registries, by using a configuration file
to set parameters it uses to collect meta information about packages, but is not yet
compatible with, for example, pip/PyPi or maven packages. This feature would be
an attractive addition to the tool set of the K9 System, enabling it to work with a
wider number of package management systems.
Additionally, the feature set provided with the K9 System is not limited in its ap-
plication to package management systems. Integrity management is also a feature
usable in the distribution of, for example, software updates to customers and end
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users, or the distribution of containerized applications. With some modification, the
K9 System could be used in these scenarios as well, providing an easy way for the
recipient of the container or software update to validate its legitimacy.

7.2.3 The K9 System: Monitoring and Integration

One of the shortcomings of the K9 Agent when deployed in its current form on a
wider scale, is the lack of monitorability. If multiple Agents are deployed in different
CI/CD environments, staying on top of their status requires looking into the build
logs of each. Additionally, there is currently no way to monitor the status of the
K9 Smart Contract, be that the currently deployed version, nor what data is stored
with the contract.
This lack of monitorability could be solved by the addition of a third component, the
K9 Dashboard. This Dashboard might include backend services connecting to the
K9 Agents that are currently deployed, and show their status and possible findings,
as well as allow access to the lists of external packages consumed by each project.
The backend might serve its data via an API, which would allow, on the one hand,
a User Interface to be built, which would show this information in an easy-to-use
way. This UI could be used to integrate the K9 System into the DevSecOps process,
providing a way to monitor usage of internal packages in CI/CD environments and
overviews over versions saved on the K9 Smart Contract. A concept of this is shown
in Figure 46 and Figure 47 in the appendix. The API might also allow the integration
of the K9 System into other Security information and event management (SIEM)
solutions, providing a way to extract security metrics and trigger alarms in existing
systems.

7.2.4 The K9 System: Integration with Open Source Projects

As explained in section 2.1.2, the Open Source Community does also show problems
concerning their authors’ credibility and possible injections of malicious versions
through their release cycle. The decentralized nature of these projects gives enough
leeway to malicious actors to regularly infiltrate these projects and wreak havoc.
This decentralized nature, however, also makes these projects ideal candidates for
the implementation of a slightly modified version of the K9 System, which would
allow Open Source projects to track their releases on the blockchain, and make it
easier for users to check the validity of Open Source software they are using.
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7.2.5 Academic interest in DCAs

Over the course of the research leading to the development of the K9 System, a large
part of the time spent researching was dedicated to analyzing actual attacks. This
was due to a marked lack of published research in terms of quantitative analysis of
the attacks themselves. This indicates that there is a distinct need for this kind of
research, which could be used to facilitate easier and faster development of systems
and solutions like the K9 System. The attacks, according to the few sources that
are actively monitoring them (most prominently, security solutions providers such
as Snyk1 and Sonatype2) do not decrease in number or severity, meaning that actual
research into the matter does still hold value.

1https://snyk.io/
2https://www.sonatype.com/
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A Architecture Decision Records

Note: Please note that in the following Architecture Decision Record (ADR)s1 the
collective “We” is used instead of “I” or passive forms. This should not imply
multiple authors, but is meant to evoke the “customers” of the system, similar to
user stories in Agile software development.

A.1 Use of Blockchain with Smart Contract as Persistent Data Store

Issue: We want a tool to store software (package) meta information, specifically
information about file integrity identified by a name and a version number.

• We want this data store to be as tamper resistant as possible

• We require a high degree of availability of the data store

• We require the data store to provide easy to interface with read and write
capabilities

• We want the data store to be hard to write to unauthorized

• We want the data store to be easy to retrieve information from

• We want the data store to be as independent of our infrastructure as possible

Decision: Decided for a smart contract on the Ethereum Blockchain.

1The ADR template used is an abridged version of the ADR template by Jeff Tyree and Art Ak-
ermann: https://github.com/joelparkerhenderson/architecture-decision-record/blob/main/templates/
decision-record-template-by-jeff-tyree-and-art-akerman/index.md
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Details

Assumptions: We want to be able to trace integrity of software packages without
trusting the delivery mechanisms. Distributing and consuming software packages
without knowledge about if or how their contents change between being authored
and installed in the target environment opens consumers up to dangers from mali-
cious actors and discourages sharing of reusable software components.

Constraints:

• If we choose a tool that needs a large supporting infrastructure, this infrastruc-
ture brings maintenance requirements and possibly other security liabilities

• If we choose a tool that requires placing trust in singular links of the “Chain
of Trust”, this brings liabilities if the link is compromised

• If we choose a tool that cannot be opened to a broader audience, we limit
possible distribution of trusted software to this audience

Positions:

• We considered using a local database. This introduces maintenance of a
database and removes the possibility of opening up the system to an audience
outside, since third parties would have to place trust in a single authority.
Additionally, availability varies heavily.

• We considered using a self-managed distributed databases, which would solve
availability issues. Since controlling interest would be held by a single party,
trust from third parties would still be an issue.

• We considered using a distributed ledger. This would include deploying out
own, which would imply heavy development load and possible maintenance
implications in the future, but would ease interfacing with third parties and
solve the reliability problem. On the other hand, deploying our own ledger
can be considered unrealistic due to needing to get third parties onboarded to
build a net of trust.

• We considered using an already existing distributed ledger in the form of public
blockchains. This included a shortlist of popular and established blockchain
technologies such as Bitcoin, Ethereum and Tezos. The requirement for ease of
read and write capabilities limited the list further to technologies that offered
smart contract capabilities, e.g. possibilities to deploy out own business logic
to interface with the blockchain.
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Argument: Since the blockchain technology space is highly volatile and fraught
with fraudulent activity [67], a technology with a good track record regarding se-
curity and legal issues was required. This led to choosing Ethereum, which is an
established technology in the space and offers easy development for smart contracts
with the Solidity language. It should be noted, that while fraudulent activity and
controversy has been perpetrated by use of technology related to the Ethereum
technology stack (For example the large amount of variously controversial activity
around NFTs between around 2020 and 2022 [68]), none of it was related to the base
technology, making the use of the Ethereum platform a reliable choice.
Additionally, the large number of distributed nodes of Ethereum increases reliabil-
ity2, and distributes control over the network over a large group of participants.

A.2 Use of a CLI-based Binary as the Security System

Issue: We want a tool to use to publish to and retrieve from the smart contract
package version integrity information to ensure the integrity of software packages
we publish and consume through an internal package registry.

• We want to integrate the system into Linux-based CI/CD environments, both
existing and deployed in future

• We want to be able to distribute the system easily to our CI/CD environments

• We want to easily use the tool with the existing features of the CI/CD envi-
ronments

Decision: Decided for a CLI-based binary program distributed via shared storage
facilities.

25973 Nodes as of August 2022, see https://ethernodes.org/
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Details

Assumptions: We want to be able to trace integrity of software packages we
install in our CI/CD environments without trusting the delivery mechanisms.
Consuming software packages without knowledge about if or how their contents
change between being authored and installed presents dangers to our CI/CD
environments and the applications they produce, since both may be compromised
by malicious software packages being distributed under the guise of benign shared
components.

Constraints:

• If we choose a tool that needs to be installed from an untrusted source, this
presents the same dangers we seek to avoid

• The tool we choose has external dependencies that need to be installed before
using it, this again presents the dangers we seek to avoid

• If we choose a tool that cannot be used from a bash script or the Linux
command line, integration is made more difficult than changing or adding
some build instructions, which will limit real-world use of the tool

Positions:

• We considered publishing a npm package that is globally installed in the build
environment. While this would make integration into the CI/CD environ-
ments easy, it would present the danger of the delivery mechanisms being
compromised, which is what was sought to be avoided in the first place.

• We considered using a compiled binary of the tool. One option would be to
place this binary in a storage location accessible to the CI/CD environments
(treated as a directory) with read access from the environment, and copying
it at runtime of the build step. This would ease distribution, and satisfy the
requirement of being usable with onboard tools of the build step, given that
the binary is compiled for the target system.

• We considered using the above-mentioned binary, and distributing it with the
Docker image used as the build environment. This would make mandating the
distribution of the tool into every build environment possible, which can be
accomplished by compliance tools of the cloud provider. On the other hand,
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it would mandate building a new build environment image every time a new
version of the tool is released.

Argument: The decision taken was to use a compiled binary distributed via shared
storage in the form of an AWS S3 Bucket. This includes the caveat of changing this
approach once the initial development and evaluation stage has been completed.
With the numerous changes and releases of new versions through the development
stage, a new build of a build environment image would slow development time too
much to evaluate the whole system in a timely manner. Thus, until this stage is
completed, a binary compiled for the target environment, distributed via shared,
read-only, storage was chosen. The npm package approach was not chosen for the
reason detailed above.
Implications: Once the development and evaluation stage has been completed, the
distribution of the tool via pre-built build environment images is favored for being
mandateable by a governing authority on the cloud platform.
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B Diagrams
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Figure 44: Classes: K9 Smart Contract
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• The software supply chain, while prividing similar advantages to
physical supply chains, presents similar risks in terms of disrup-
tion by malicious actors

• The “Dependency Confusion” attack enables threat actors to poi-
son software products by injecting malicious dependencies utiliz-
ing existing behaviors in software package management systems

• Existing static and dynamic analysis techniques are inefficient at
preventing the attack, considering the large amount of data to be
processed
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packages based on their file integrity, providing easy access to
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